ABCA4 Heterozygosity

William Carrera, MD MS, Caleb Ng, MD, Caroline Desler, BS, H. Richard McDonald, MD, Robert N. Johnson, MD, J. Michael Jumper, MD, Judy J. Chen, MD, Anita Agarwal, MD

California Pacific Medical Center & West Coast Retina
San Francisco, CA
No authors have pertinent financial disclosures.
Summary

• In a small group of patients heterozygous for ABCA4 mutations, there was a trend towards mutations in critical motifs
• 2 novel mutations and 2 un-described mutations are characterized
• Similarities with late-onset Stargardt’s disease
• Possible mechanisms discussed
ABCA4

- One of the **most common** genetic mutations in inherited retinal dystrophies
- Associated with several disorders
Stargardt’s Disease
Fundus Flavimaculatus
Generalized Choriocapillaris Dystrophy
ABCA4

Retinoid transport within ROS

ABCA4

• 50 exons over 6,800 base pairs
• Over 1000 known variants

Illustrations adapted from Ensembl and GnomAD
ABCA4

- High carrier rates of ABCA4 allelic variation, 5-6% in some populations
- Some patients carry only a single mutation even when tested with advanced sequencing methods
Purpose

• To identify and describe genotypic and phenotypic characteristics of ABCA4 heterozygotes
Methods

• Retrospective study
• Queried all records that had undergone genetic testing at a single, large vitreo-retinal practice from 2007-2020.
• Records selected which carried a single variation in ABCA4 with no other potentially causative variants in other genes
Methods

- Patients underwent either Sanger sequencing or Next Generation Sequencing
- hg build GRCH37 hg19
- reference sequences for ABCA4 (RefSeq NG_009073.1 for gDNA, NM_000350 for mRNA)
- Public databases: ClinVar, LOVD, EVS, GnomAD
- In silico: Polyphen-2, SIFT, Mutation Taster
Results

• Reviewed records for 37 patients with ABCA4 mutations

• N = 6 heterozygous patients
 – 1 large deletion of exons 10-11
 – 4 missense
 – 1 splice variant
Results

• **Several phenotypes** observed
 – Stargardt’s – 3 of 6
 – ABCA4 disease – 1 of 6
 – Pattern Dystrophy - 2 (initial diagnosis)

• No patients had a prior family history

• Mean age at diagnosis 40.2 years (range 19-67)

• Final BCVA ranged from 20/25 to 20/250
Summary of Missense Mutations

- N96H in ECD1
- P927S in ECD1
- G1065D in NBD1
- E2096K in NBD2
Deletes portion of ECD1
Deletes portion of ECD1
c.2779C>T, p.P927S

Occurs within NBD1 domain
c.3194G>A p.G1065D
Occurs within ABC signature motif
c.3194G>A p.G1065D

Occurs within ABC signature motif
c.6286G>A, p.E2096K

- Heterozygous presentation not previously described
- **Walker B motif of NBD2 domain**, abolishes ATP binding
Summary of Missense Mutations
ABCA4 heterozygotes

• late-onset Stargardt’s disease: high rates of heterozygosity
• Age at onset may depend on zygosity
 – N96H variant produces early onset disease in homozygous or compound heterozygous state
 – Our patient had late onset disease

ABCA4 heterozygotes

- Late-onset Stargardt’s cohorts noted slower progression
- All of our patients had significant progression
- ‘Single mutation’ does not necessarily portend a good prognosis
Possible mechanisms

• Undetected mutations
 – Deep intronic variants
 – Regulatory mutations
 – Copy number variants (rare)

• Modifier gene mutations

• Hypomorphomic alleles

• Environmental factors
Limiting factors

• Small, retrospective study
• Unable to perform segregation analysis or copy number variant analysis
Thank you!