

Presented at Retina Society 2020

David Eichenbaum, MD,^{1,2} on behalf of the Ladder investigators

Giulio Barteselli, MD³; Steve Blotner, MS³; and Shamika Gune, MD³

¹ Retina Vitreous Associations of Florida, St. Petersburg, FL; ² Morsani College of Medicine, University of South Florida, Tampa, FL;

³ Genentech, Inc., South San Francisco, CA

Disclosures

- Financial disclosures
 - DE: Consultant: Alimera, Allegro, Allergan, Clearside, Dutch Ophthalmic, EyePoint, Genentech, Inc., Gyroscope, Kodiak, Notal Vision, Novartis, Orbit Biomedical, Ocular Therapeutix, Recens Medical, Regeneron; Stockholder: Boston Image Reading Center, Clearside, Hemera, Network Eyecare, US Retina; Speaker: Allergan, Dutch Opthalmic, Genentech, Inc., Novartis; Investigator/Research Grant Recipient: Alimera, Alkahest, Allergan, Chengdu, Clearside, Genentech, Inc., Iveric (Opthotech), Mylan, NGM, Novartis, Ophthea, Regeneron
 - GB, SB, SG: Employee: Genentech, Inc.
- Study disclosures
 - This study includes research conducted on human subjects
 - Institutional Review Board approval was obtained prior to study initiation
 - Funding was provided by Genentech, Inc., a member of the Roche Group, for the study and third-party writing assistance, which was provided by Ashley Sizer, PhD, of Envision Pharma Group

Key Takeaways Key Learnings From the Phase 2 Ladder Trial of the PDS for nAMD

- PDS 100 mg/mL provides the efficacy and durability to support refills every 6 months
- ► Intentional layer-by-layer incision of the sclera until the pars plana is exposed, followed by laser ablation, is key for pars plana hemostasis
- Conjunctiva and Tenon's capsule anchorage to limbal sclera critical for maintaining coverage over implant
- ► The refill-exchange procedure is successfully performed with the surgeon standing on the contralateral side of the study eye, using a perpendicular approach and precise targeting

Ladder Phase 2 Characterized the Treatment Effect, Durability, and Safety of the PDS

Patients with nAMD responsive to ≥ 2 anti-VEGF injections of any type^a

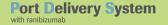
 $N = 220^{b}$

Randomized 3:3:3:2

PDS with ranibizumab 10 mg/mL n = 58

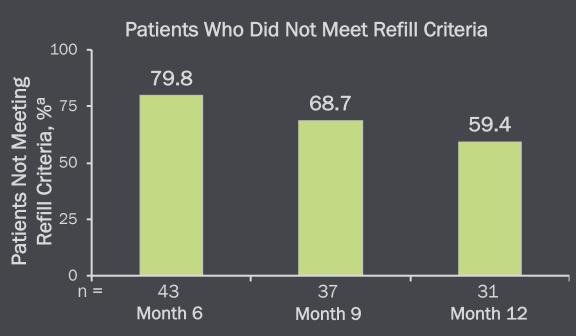
PDS with ranibizumab 40 mg/mL n = 62

PDS with ranibizumab 100 mg/mL n = 59


Monthly intravitreal ranibizumab 0.5 mg n = 41

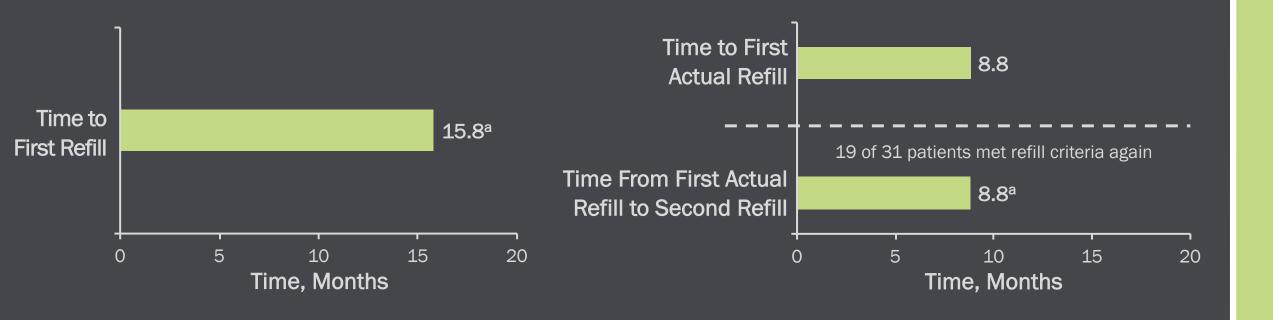
PRN re-treatment (refill)

Monthly injections


Ladder Phase 2 Trial

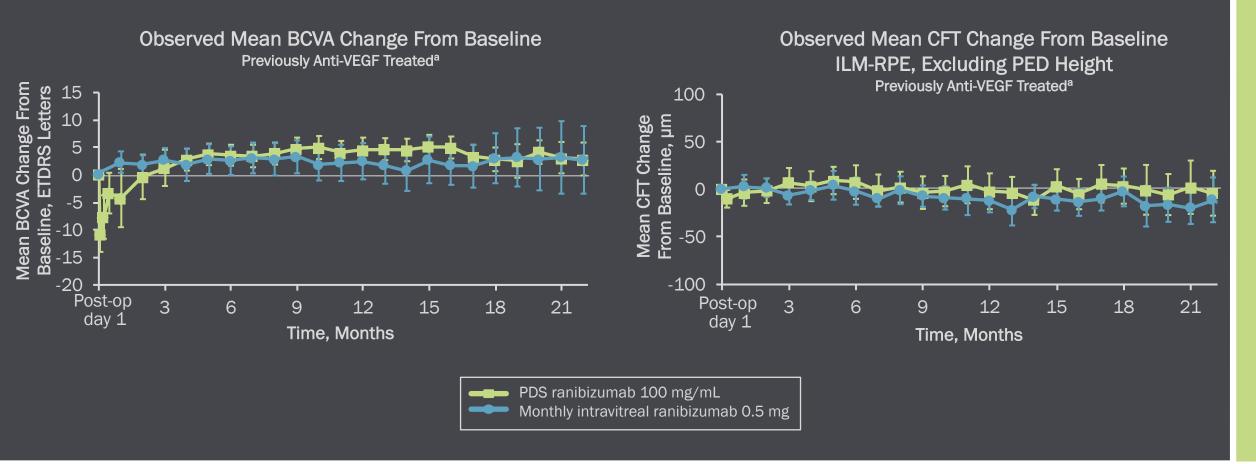
- Supported selection of PDS 100 mg/mL for phase 3
- Enabled key learnings about:
 - Treatment effect and durability of PDS 100 mg/mL
 - PK profile of PDS 100 mg/mL
 - Techniques of PDS implantation and refill-exchange procedures

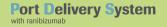
Durability: 50% of Patients at 15.8 Months and 80% of Patients at 6 Months Did Not Require a Refill

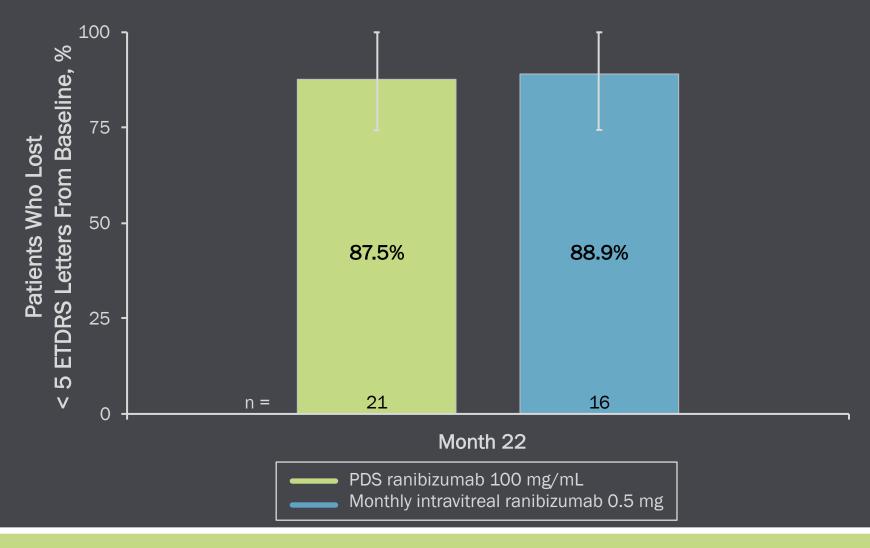


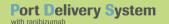
Consistency in Refills Median Time of 8.8 Months to First and Second Refills in Patients Needing Refills

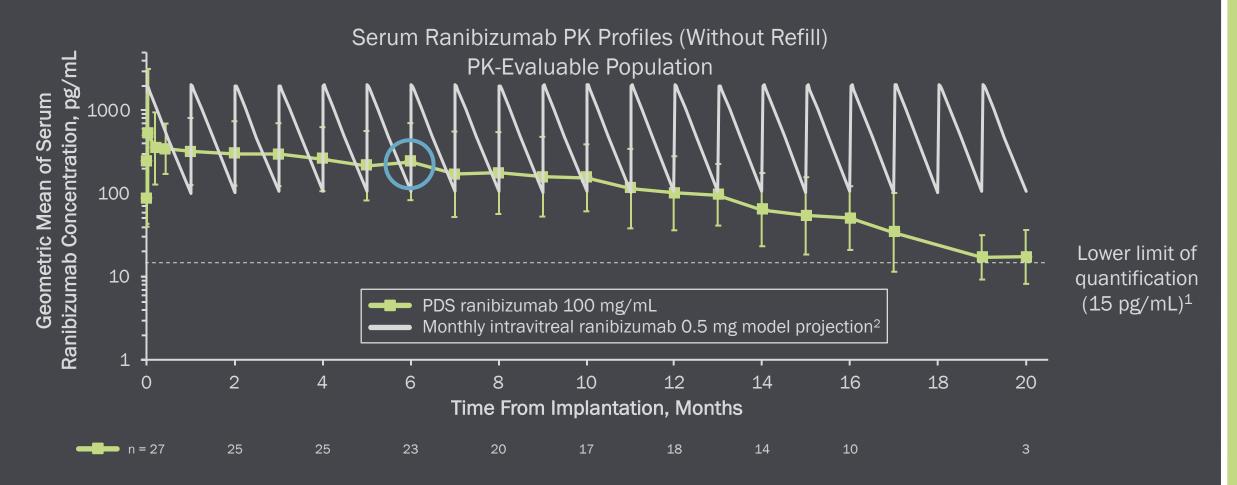
All PDS 100 mg/mL Patients
59 patients


PDS 100 mg/mL Patients With ≥ 1 Actual Refill 31 patients

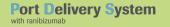



BCVA and CFT Outcomes Similar Between PDS 100 mg/mL and Monthly Ranibizumab Over a Mean 22 Months


Mean time on study = 22.1 months for all PDS patients (range, 10.8–37.6 months)



Robust Maintenance of BCVA Over a Mean 22 Months on Study PDS 100 mg/mL Comparable With Monthly Ranibizumab Injections



In PDS 100 mg/mL, the Implant Continues to Release Ranibizumab Through At Least Month 16

Analysis excludes patients who had received intravitreal ranibizumab injections in the fellow eye, received supplemental intravitreal ranibizumab injections, or received prior intravitreal injections with bevacizumab. Patient numbers decreased over time as patients got refills. For a given arm and sampling time point, if more than one-third of values were below the lower limit of quantification, no value is reported.

Scleral Dissection Followed by Laser Ablation of the Pars Plana Key for Achieving Postoperative Hemostasis

Scleral Dissection

Placeholder for Video Eichenbaum_Video_Slide 10_ScleralDissection

Laser Ablation of Pars Plana

Placeholder for Video Eichenbaum_Video_Slide 10_LaserAblation

Postoperative vitreous hemorrhage rate was reduced from 50.0% to 3.8% after optimization of the surgical procedure^a

Conjunctiva and Tenon's Dissection at Peritomy and Anchorage of Both Layers to Limbus During Closure Are Crucial for Optimal Surgery Outcomes

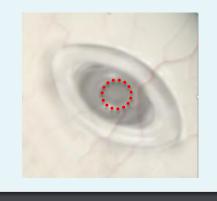
Peritomy^a

Placeholder for Video Eichenbaum_Video_Slide 11_Peritomy

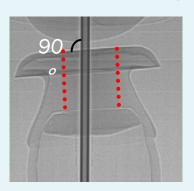
Crucial Steps in Peritomy

- ► Identify, preserve Tenon's capsule
- ► Blunt dissection from limbus to fornix

Closure


Placeholder for Video Eichenbaum_Video_Slide 11_Closure

Crucial Steps in Closure


- Identify Tenon's capsule under conjunctival
- Draw both layers across limbus over cornea
- ► Suture both layers at limbus with scleral bite

Refill-Exchange Procedure Requires a Perpendicular Approach and Precise Targeting

Perpendicularity

Placeholder for Video Eichenbaum_Video_Slide 12_Refill-Exchange

Ladder Phase 2 Trial Key Learnings

- ▶ PDS 100 mg/mL provides the efficacy and durability to support refills every 6 months
- ► Intentional layer-by-layer incision of the sclera until the pars plana is exposed, followed by laser ablation, is key for pars plana hemostasis
- Conjunctiva and Tenon's capsule anchorage to limbal sclera critical for maintaining coverage over implant
- ► The refill-exchange procedure is successfully performed with the surgeon standing on the contralateral side of the study eye, using a perpendicular approach and precise targeting

In the Archway phase 3 trial, PDS 100 mg/mL Q24W achieved visual acuity outcomes equivalent to monthly ranibizumab 0.5 mg at weeks 36/40

Pagoda (DME) phase 3 trial currently enrolling

PDS has the potential to reduce treatment burden through continuous delivery of ranibizumab

Thank You to All Participating Principal Investigators and Research Teams and Patients at Study Sites

Aaberg Jr., Thomas	Chen, Sanford	Higgins, Patrick	McCannel, Colin	Singh, Rishi
Antoszyk, Andrew	Chittum, Mark	Hovland, Peter	Miller, Daniel	Suñer, Ivan
Awh, Carl C.	Clark, W. Lloyd	Howard, James	Mittra, Robert	Thompson, John
Baker, Carl	Dreyer, Richard	Johnson, Robert	Nielsen, Jared	Tosi, Joaquin
Berger, Brian	Dugel, Pravin	Katz, Randy	Pearlman, Joel	Wagner, Alan
Bhisitkul, Robert	Eichenbaum, David	Khanani, Arshad	Pieramici, Dante	Walker, Joseph
Brown, David M.	Engstrom, Bob	Kitchens, John	Pollack, John	Wieland, Mark
Callanan, David	Freeman, William	Lai, Michael	Rachitskaya, Aleksandra	Williams, David
Calzada, Jorge	Gordon, Alan	Lauer, Andreas	Regillo, Carl	Zilis, John
Campochiaro, Peter	Graff, Jordan	Marcus, Dennis	Rose, Steven	
Chang, Margaret	Gupta, Sunil	McCabe, Frank	Singer, Michael	