Identifying risk factors for silicone oil droplets in anti-VEGF injections: a quantitative in vitro study

JULIA FARAH MD (RETINA FELLOW, UNIVERSITY OF CALGARY)
ALEENA VIRANI BSCH
EMI SANDERS BSC, CCRP (UNIVERSITY OF CALGARY)
RIYAZ VIRANI BSC
AMIN KHERANI MD (CLINICAL ASSOCIATE PROFESSOR, UNIVERSITY OF CALGARY)
GEOFF WILLIAMS MD (CLINICAL ASSOCIATE PROFESSOR, UNIVERSITY OF CALGARY)
Financial disclosure

JULIA FARAH (NONE)
ALEENA VIRANI (NONE)
EMI SANDERS (NONE)
RIYAZ VIRANI (NONE)
AMIN KHERANI (NONE APPLICABLE)
GEOFF WILLIAMS (NONE APPLICABLE)

INVESTIGATOR
NOVARTIS
BAYER
ALLERGAN
REGENERON
ABBOTT LABS
ROCHE
CHENGDU KANGHONG BIOTECH

ADVISORY BOARDS
NOVARTIS
BAYER
ALCON
VALEANT
ALLERGAN
Summary

- **Intravitreal injections:**
 - Silicone oil (SiO) droplets are released by syringes

- **Purpose:**
 - To examine potential risk factors of release of silicone oil droplets in anti-VEGF injections

- **Methods:**
 - Quantitative in-vitro study
 - Study the source of silicone oil droplets: compounding, delivery syringe
 - Impact on the quantity of SiO: technique, drug
Summary

Conclusions:
- Compounding processes can be a source of SiO droplets
- Variability between the 3 anti-VEGF agents
- Variability between insulin syringes
Introduction

- Silicone oil (SiO) droplets are released by syringes and found in the vitreous of patients that received intra-vitreal injections (Bakri and Ekdawi, 2008; Freund et al., 2006).

- These droplets can lead to:
 - Complaint of floaters that, in some cases, require vitrectomy (Hahn et al., 2015)
 - Post injection glaucoma: clogging of the trabecular meshwork (Wingard, et al., 2019)
Purpose

- To examine some potential risk factors of release of silicone oil droplets in anti-VEGF injections
 - compounding
 - injection techniques
 - drug
Methods

- Quantitative in-vitro study
- Three anti-VEGF agents (Bevacizumab, Ranibizumab and Aflibercept) + control (sterile water for injection)
- Compounding process:
 - the content of the industry vials was drawn into a 3 ml syringe ("base syringe" – BD and TERUMO)
 - compounded into the drug delivery syringe (BD 0.3ml Insulin Syringe).
Methods

- The contents were injected into amber glass vials (silicone-free)

- Four different techniques of injections:
 - Normal
 - Heavy
 - Agitation
 - Overfill
Methods: techniques

Normal:

Heavy:

Agitation:

Overfill:

• Syringe prepared with .07 ml
• .02 ml is primed
• .05 ml is injected
Methods

- Content was examined for the presence and quantity of SiO droplets

- 100 x magnification with a Brightfield light microscope

- Hand tally counter was used to count the number of drops.

- Each vial was tested in triplicate (3x3µL)
Methods
Rationale/Hypothesis

- **Source of silicone oil droplets:**
 - Base syringe (compounding)?
 - OR
 - Delivery syringe?

- **Impact on the presence:**
 - Technique?
 - OR
 - Drug?
Results

Organization of trials

<table>
<thead>
<tr>
<th>Drug</th>
<th>Total of Trials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflibercept</td>
<td>228</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>246</td>
</tr>
<tr>
<td>Ranibizumab</td>
<td>108</td>
</tr>
<tr>
<td>Control</td>
<td>246</td>
</tr>
<tr>
<td>Total</td>
<td>828</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Syringe</th>
<th>Total of Trials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delivery syringe (after compounding)</td>
<td>792</td>
</tr>
<tr>
<td>Base syringe only</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>828</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Technique</th>
<th>Total of Trials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>normal</td>
<td>288</td>
</tr>
<tr>
<td>heavy</td>
<td>288</td>
</tr>
<tr>
<td>overfill</td>
<td>108</td>
</tr>
<tr>
<td>agitation</td>
<td>108</td>
</tr>
<tr>
<td>Total</td>
<td>828</td>
</tr>
</tbody>
</table>
Results

- Base syringe (3cc) for compounding:
 - TERUMO VS BD
 - By student’s t-test, there was no significant difference in the quantity of SiO oil found, p=0.376

-> TEST FOR SiO Droplets
Results

Base syringe & Delivery syringe:

TERUMO VS BD

By Student’s T test, there was a statistically significant difference between the quantity of SiO droplets between BD and Terumo base syringes, p=0.05
Results

Technique

Heavy vs normal vs agitation vs overfill

One way ANOVA: there was no significant difference in quantity of SiO found between groups, $p > 0.05$ ($p = .189$);
Results

Drug

Aflibercept vs Bevacizumab vs Ranibizumab vs Control (Water)

SiO drops/ trial (Mean)

Conducted one-way ANOVA comparing quantity of SiO droplets (significant)
Compounding processes can be a source of SiO droplets for anti-VEGF injections.
Conclusion

- Syringes containing anti-VEGF agents release more silicone oil droplets compared to syringes with control (water).
 - Suggesting a possible interaction between the anti-VEGF molecules and SiO.
 - Different between the 3 anti-VEGF agents studied.

<table>
<thead>
<tr>
<th></th>
<th>SiO drops/trial (Mean)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflibercept (N=228)</td>
<td>5.87</td>
</tr>
<tr>
<td>Bevacizumab (N=246)</td>
<td>3.24</td>
</tr>
<tr>
<td>Ranibizumab (N=108)</td>
<td>0.82</td>
</tr>
<tr>
<td>Water (N=246)</td>
<td>0.41</td>
</tr>
</tbody>
</table>
The “Heavy force” technique is associated with an increased number of SiO droplets per trial.

Not statistically significant
Conclusion

- This study has also showed variability between insulin syringes of the same manufacturer
- suggesting that the amount of SiO as lubricant in each syringe may be variable.

<table>
<thead>
<tr>
<th>Technique</th>
<th>drops of SiO/ trial</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Mean</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>Normal</td>
<td>288</td>
<td>2.31</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Heavy</td>
<td>288</td>
<td>3.95</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Overfill</td>
<td>108</td>
<td>2.65</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Agitation</td>
<td>108</td>
<td>2.09</td>
<td>27</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drug</th>
<th>Average SiO drops/trial (Range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflibercept (N=228)</td>
<td>5.87 (0-50)</td>
</tr>
<tr>
<td>Bevacizumab (N=246)</td>
<td>3.24 (0-50)</td>
</tr>
<tr>
<td>Ranibizumab (N=108)</td>
<td>.82 (0-9)</td>
</tr>
<tr>
<td>Water (N=246)</td>
<td>.41 (0-17)</td>
</tr>
</tbody>
</table>
Thank you