Preoperative Pneumatic Retinopexy as an Adjunct for Pars Plana Vitrectomy

PPnR Technique

Tina Felfeli, MD and Efrem D Mandelcorn, MD, FRCSC

Department of Ophthalmology and Vision Sciences, University of Toronto
The authors **do not have** any affiliation (financial or otherwise) with a commercial organization that may have a direct or indirect connection to the content of this presentation.
Summary

- This presentation reviews the use of preoperative pneumatic retinopexy (PPnR) as an adjunct to PPV for repair of RRD.

- The application of the PPnR technique was evaluated in a retrospective case series of RRDs with multiple large and/or inferior breaks.

- The findings suggest that PPnR may serve as a valuable two-stage surgical technique with high reattachment rate, enhanced ease of PPV, and good functional outcomes.
Introduction
Introduction

• Pars plana vitrectomy (PPV) is the most commonly performed procedure for primary rhegmatogenous retinal detachment (RRD) repair with a high retinal reattachment success rate.

• Nonetheless, suboptimal functional outcomes and metamorphopsia are the most common postoperative complications of RRD repair with PPV.¹

• It has been suggested that variability in functional outcomes may be associated with the timing and ease of surgical repair.²⁻⁴

Rationale

A **two-stage** repair technique with preoperative pneumatic retinopexy (PPnR) may offer superior postoperative outcomes by providing a more gradual resorption of subretinal fluid (SRF) during pneumatic retinopexy compared to forced internal drainage during PPV.
Purpose

To discuss the role of PPnR as an adjunct to PPV for repair of RRD.
Methods
Study Design

- Retrospective consecutive case series, 2016-2019
- Single vitreoretinal surgeon’s practice
- Toronto Western Hospital, University of Toronto, Canada

Inclusion Criteria
- RRDs with multiple large breaks in more than one quadrant, and/or inferior breaks requiring PPV

Exclusion Criteria
- PVR grade C or D
- Contraindications for intravitreal gas injection (air travel or living on high altitude)
- Inability to maintain head position post-operatively
Case

• 66-year-old ♂
• Macula-split RRD
• Vitreous hemorrhage
Macula-split RRD extending from 10 to 4:30 o’clock with 9 breaks.
Procedure Sequence

RRD

Not meeting classical indications for PnR*

PPnR (SF₆ or C₃F₈)

PPV performed within 1-2 weeks

Meeting classical indications for PnR

PnR

*multiple inferior breaks, cannot find a break, media opacity, patient uncooperative, etc.
At 72 hours following PPnR, the superior retina and macula are re-attached.
72 hours following PPnR
Blade removed from trocar slowly to percolate the gas through the open valve.
[Video]
Results
Overall Characteristics

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>106 eyes</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>62.5±11.4 years</td>
</tr>
<tr>
<td>Sex</td>
<td>21% females</td>
</tr>
<tr>
<td>Phakic</td>
<td>39%</td>
</tr>
<tr>
<td>Myope (>6D)</td>
<td>16%</td>
</tr>
<tr>
<td>RD History</td>
<td>11%</td>
</tr>
<tr>
<td>Lattice Degeneration</td>
<td>32%</td>
</tr>
</tbody>
</table>
Retinal Detachment Characteristics

- 69% macular involvement
- 5.3±2.2 clock hours of RD
- 35% inferior retinal breaks
- 2.8±1.9 breaks per eye
- 90% multiple retinal breaks in more than one clock hour
Procedure Characteristics

PPnR

19% SF₆ tamponade

PPV

4.5% Combined phaco-vitrectomy

21% SF₆ tamponade
Ease of Surgical Repair

- **4%** Perfluorocarbon heavy liquid
- **7%** Posterior drainage retinotomy
- **8%** Silicone oil tamponade
Anatomical and Functional Outcomes

91% Primary anatomical success rate

20/40 Best corrected visual acuity at last follow-up
 (0.3±0.6 logMAR)

348±329 Days of follow-up
Post-operative Complications

15% ERM

10% CME

10% Residual SRF
Discussion
Proposed Benefits

Reduce

• The risk of macular involvement in macula-on RRDs
• The amount of macular SRF (more immediate macular reattachment)
• The amount of peripheral SRF (easier peripheral vitreous dissection)
• The likelihood of retinal folds postoperatively
• The need of a posterior drainage retinotomy
• The use of heavy PFO
Other Theoretical Benefits

Increase

• Likelihood of a more physiologic retinal reattachment, compared to manual drainage of SRF during PPV

• Accuracy of realignment of the photoreceptors to the RPE
Conclusions

A two-stage repair technique with PPnR may offer improved ease for PPV and superior postoperative outcomes by preoperative resorption of SRF.
THANK YOU

tina.felfeli@mail.utoronto.ca

efrem.mandelcorn@utoronto.ca