Targeting VEGF-Sustaining Signaling to Restore Homeostasis in the Outer Retina

M. Elizabeth Hartnett

Calvin S. and JeNeal N. Hatch Presidential Endowed Chair Distinguished Professor of Ophthalmology and Visual Sciences Haibo Wang, Aniket Ramshekar, Eric Kunz Moran Eye <u>Center, University of Utah</u>

Financial Disclosure

- Discuss anti-VEGF agents in relationship to clinical trials
- Financial interests or relationships:
 - Knights Templar Eye Foundation: Consultant/Advisor
 - Lippincott Williams and Wilkins: Royalty
 - NIH/NEI: Grant Support
 - Novartis: Grant Support; PAREXEL: Grant Support
- US patent # 10,214,741 (2/26/2019)

Summary

- AMD influenced by genetic predisposition and external stresses that affect outer retina photoreceptors, RPE and choroid
- Activation of Rac1 by VEGF and other AMD stresses necessary for choroidal endothelial cell migration across RPE, a key step for type 2 MNV
- Sustained activation of Rac1 involves binding to adaptor protein, IQGAP1
- Targeting the Rac1/IQGAP1 binding site reduces sustained Rac1 activation and might safely restore homeostasis despite multiple stresses that cause pathology in AMD

Background

- Anti-VEGF agents effective in neovascular AMD
- But improve vision in about 50% of patients
- We focused on effector of VEGF Rac1GTP
 - activated by other known stresses associated with AMD oxidation and inflammation
 - and is necessary for activating choroidal endothelial cells to migrate across the RPE, important step in type 2 macular neovascularization (MNV)

Rac1

- Besides Rac1GTP's effects on choroidal endothelial cell migration across the RPE
- Rac1GTP
 - subunit for NADPH oxidase, a key enzyme generating ROS
 - for intracellular signaling of NFkB and inflammatory pathways
 - for defense against microbes
- Instead of targeting Rac1, which can have beneficial effects fighting infection, we explored an adaptor protein that binds Rac1GTP in cancer and disease

IQGAP1

- IQ protein motif containing GTPase activating protein 1 (IQGAP1) – multiple domains bind different signaling effectors
- Inactive in cytoplasm when not bound
- When bound, coordinates intracellular signaling to enable biologic events
 - Nuclear transcriptional events
 - Altering cell shape for migration
 - Interacting with ECM at cell membrane

Hypothesis

• IQGAP1 was important in Rac1GTP (active Rac1) mediated choroidal neovascularization

 Rac1GTP binding to IQGAP1 domain sustained its activation induced by VEGF

Methods

- *Iqgap1^{-/-}* and littermate *Iqgap1^{+/+}* mice lasered and 7 days later:
 - Assayed for choroidal neovascularization (CNV; lectin-stained)
 - Immunohistochemistry for IQGAP1 and Rac1GTP
- Human choroidal endothelial cells (CECs) from adult donor eyes:
 - Transfected with Iqgap1 or control siRNA, treated with VEGF or PBS
 - Transfected with mutant construct to Rac1 binding domain of IQGAP1 (GFP-IQ-MK24) or control (GFP-IQ-WT), time course of VEGF treatment or PBS
 - Outcomes for both Rac1GTP and Rac1GTP/IQGAP1

IQGAP1 localized in Human MNV and Experimental CNV

IQGAP1 localized with lectin-labeled CNV 7 days after laser C57bl6/J mice

Sections human neovascular AMD and MNV, courtesy of Hans Grossniklaus, Emory

Iqgap1^{-/-} had less CNV than littermate controls and Less Colocalization with Rac1GTP in CNV

IQGAP1 Knockdown inhibited VEGF induced VEGFR2 activation, Rac1GTP and Rac1GTP binding IQGAP1

Control siRNA IQGAP1siRNA

IQGAP1 Knockdown Inhibited VEGF-induced CEC Migration

VEGF Induced Sustained Rac1GTP over 2 hours when Bound to IQGAP1

Conclusions

• Sustained activation of Rac1 by VEGF involves binding the adaptor protein, IQGAP1

- Targeting the IQGAP1 binding site of Rac1GTP reduces the time course of Rac1 activation and may be a method to restore homeostasis
 - despite multiple stresses that cause pathology in AMD
 - without removing beneficial aspects of active Rac1

Acknowledgements NIH/NEI

- R01 EY015130
- R01 EY017011
- T35 EY026511
- R13 EY029900
- NEI PEDIG ROP1 study
- T32 EY024234 (AR)

Departmental Research to Prevent Blindness Retina Research Foundation, Paul Kayser PAAO Calvin S. & JeNeal N. Hatch Presidential Endowed Chair

Hartnett Lab

Haibo Wang **Colin Bretz** Lauren Flom Eric Kunz Aniket Ramshekar Mark Albrecht Carson Kennedy Silke Becker **Steve Budd** Pete Geisen Manabu McCloskey Janet McColm Kassem Hajj **Grace Byfield Yanchao Jiang** Ivan Cardenas Aaron Simmons Collaborators Chris Hill, Utah David Sacks, NIH Brahim Chaqour, Downstate Bill Hauswirth, U of Florida