LONG TERM RESULTS OF PLANNED PRETERM DELIVERY AND TREATMENT OF NORRIE DISEASE

Robert A. Sisk, MD, FACS
Virginia M. Utz, MD
Terry L. Schwartz, MD

The Retina Society’s 53rd Annual Meeting
DISCLOSURES

• Robert Sisk, MD
 • Leica (C)
 • Gyroscope (C)
 • AGTC (A, C)
• Virginia Utz, MD – Retrophin (R)
• Terry Schwartz, MD - None
SUMMARY

- There were no late sequelae or developmental delay after planned preterm delivery and ablative laser treatment for Norrie disease.
- The retinas remained attached and no further treatment was required beyond the first year of life.
- Despite no neurovascular development of the fovea at birth, visual function gradually improved over the first few years of life.
REVIEW OF PAST HISTORY

- +FamHx Norrie disease (Older brother and maternal uncle blind at birth from TRD OU) and +NDP, +LRP5 by amniocentesis
- Delivered at 34 weeks GA with EUA; 2 days later, laser ablation of avascular retina, and intravitreal bevacizumab (IVA) OS
- Zone 1 ROP/PFV phenotype OU with severe FEVR-like capillary abnormalities and preretinal neovascularization
REVIEW OF PAST HISTORY

• At 20 weeks postnatal, limited vitreous hemorrhage OU from hyaloid artery regression was treated with repeat IVA OU

• OCT demonstrated no foveal architecture at birth or during first year of life
NDP/NORRIN FUNCTIONS TO:

• Stimulate retinal angiogenesis and capillary development from the superficial vascular plexus from the astrocytic framework
• Regress hyaloid vascular system
• Promote retinal ganglion cell survival
WITHOUT NORRIN:

• Angiogenesis beyond vasculogenesis does not occur, including lack of deep retinal vessels
• Creates relative ischemia, even in portions of the retina with larger vessels coursing through them
• Hypoxia upregulates VEGF-A, HIF-1α, and Angiopoietin 2, which promote retinal neovascularization
• Fibrosis, tractional retinal detachment, and pseudoglioma formation with secondary microphthalmia from RD/tethering by hyaloid system that failed to regress
FUNCTIONAL OUTCOMES: FIRST YEAR OF LIFE

<table>
<thead>
<tr>
<th>Age</th>
<th>Binocular Visual Acuity (Teller)</th>
<th>Refractive Error</th>
<th>Other Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 mos</td>
<td>20/540 (38 cm)</td>
<td>-9.50+1.00x100 -8.00+3.75x097</td>
<td>-Horizontal right jerk nystagmus - Alternating XT</td>
</tr>
<tr>
<td>5 mos</td>
<td>20/360 (38 cm)</td>
<td>-8.50+3.00x080 -8.00+5.00×100</td>
<td>Horizontal right jerk nystagmus - Alternating XT</td>
</tr>
<tr>
<td>9 mos</td>
<td>20/360 (38 cm)</td>
<td>-8.50+3.00x080 -8.00+5.00×100</td>
<td>Horizontal right jerk nystagmus (improved) X(T)</td>
</tr>
<tr>
<td>12 mos</td>
<td>20/190 (38 cm)</td>
<td>-8.50+3.00x080 -8.00+4.75x100</td>
<td>Horizontal right jerk nystagmus (improved) X(T) (well-controlled)</td>
</tr>
</tbody>
</table>
5 YEARS LATER:

Near = 20/40 with +4.00
Nystagmus – intermittent, dampens with convergence, and small left face turn
Green = normal VF
Red = Patient’s VF

1cm round stimulus, 100% contrast against white background
DISCUSSION

• Patient has functional real-world vision - drives dirt bikes, plays baseball, and attends regular school with help from low vision aids.

• Foveal vascularization never progressed beyond pattern observed at birth, even in eye not initially treated with bevacizumab.

• Visual acuity improvement over time may relate to foveal differentiation or cortical development (visual maturation).

• Recurrent retinal neovascularization or secondary vitreo-retinal traction was not observed beyond the first year of life.
CONCLUSIONS

• The onset of RD in Norrie disease is unknown. Prenatal genetic confirmation and preterm delivery affords the opportunity to prevent lifelong blindness by ablative laser and intravitreal bevacizumab

• Visual acuity improved despite foveal hypoplasia and incomplete retinal vascular development, and the patient achieved a highly functional visual outcome