Lower Fetal Hemoglobin Levels at 31- and 34weeks Post Menstrual Age is Associated with the Development of Retinopathy of Prematurity PaclFiHER Report No. 1 PaclFiHER Study Group (Preterm Infants and Fetal Haemoglobin in ROP)

> Kim Jiramongkolchai, MD Assistant Professor Wilmer Eye Institute Baltimore, Maryland

Disclosures

- Knights Templar Eye Foundation Career Starter grant
- Unrestricted grant to Wilmer Eye Institute from Research to Prevent Blindness

Summary

- Fetal hemoglobin (HbF) is the main carrier of oxygen in newborns.
- To date, the temporal relationship between HbF levels and ROP development has not been examined.
- In this prospective cohort study, <u>low HbF levels</u> at 31- and 34weeks post menstrual age (PMA) <u>increased</u> the risk of <u>ROP</u> by more than seven-fold.
- A decrease in HbF precedes the development of ROP and may play an important role in disease pathogenesis.

Retinopathy of Prematurity (ROP)

https://ualbertaslp.wordpress.com/2014/02/03/the-preterm-infant-ototoxic-drugs-and-the-nicu/

Pathogenesis of ROP

N Engl J Med. 2012 Dec 27; 367(26): 2515–2526.

Fetal vs Adult Hemoglobin

• HbF comprises 90% of total hemoglobin

HbF vs HbA

- Increased O₂ affinity
- Left shift oxyhemoglobin curve
- Steeper oxyhemoglobin curve

NeoReviews January 2011, 12 (1) e29-e38

Prior Studies

- Relationship of HbF levels and risk of ROP development studied in context of blood transfusions with equivocal results
 - Erdol et al Blood tranfusions with HbA decreased mean HbF levels. No increased risk of ROP.¹
 - Strutchfield et al. Blood transfusions with HbA decreased mean HbF levels. Observed an <u>increased risk of ROP</u>.²
- Major limitation: temporal relationship between HbF and ROP development not explored.

1. Erdol H et al. Investigation of the effect of hemoglobin F and A levels on development of retinopathy of prematurity. *J AAPOS* 2017; **21**(2): 136-140.

2. Stutchfield et al. Foetal haemoglobin, blood transfusion, and retinopathy of prematurity in very preterm infants: a pilot prospective cohort study. *Eye (Lond)* 2017; **31**(10): 1451-1455.

Study Objective

To characterize the temporal relationship between HbF levels and ROP development.

Methods

- Single institution prospective cohort study.
- Inclusion: pre-term infants who met the screening criteria for ROP (born < 31 weeks gestational age or <1500 g).
- HbF measured at birth (cord blood), 31-, 34-, and 37-weeks PMA.
- ROP examination performed by expert ROP screeners.

Results

Baseline Patient Characteristics

591 50	No ROP $(n = 45)$	Mild ROP $(n = 12)$	Severe ROP $(n = 3)$	p value
Gender, n(%)				
Male	27 (60)	4 (33)	1 (33)	0.23
Female	18 (40)	8 (67)	2 (67)	
GA (weeks) mean (std); range (weeks)	28.2 (2.0); 24-33	25.5 (1.5); 23-28	23.7 (0.6); 23-26	<0.0001*
Race, n(%)				0.050
Black				
White	20 (44)	3 (25)	0 (0)	
Other	22 (49)	5 (42)	3 (100)	
Multiple Births	3 (7)	4 (33)	0 (0)	0.097
BPD	18 (40)	1 (8)	1 (33)	0.0072°
PD	27 (60)	12 (100)	3 (100)	0.018*
Meningitis	13 (29)	8 (67)	2 (67)	1.0
IVH	3 (7)	0 (0)	0 (0)	0.0097"
Sepsis	11 (24)	8 (67)	2 (67)	0.44
	26 (58)	8 (67)	3 (100)	
Haemoglobin				
(g/dl), birth, mean (std)	16.1 (2.4)	13.5 (1.9)	16.9 (2.8)	0.0084
Haemoglobin, 31 weeks PMA	13.7 (2.4)	12.4 (2.1)	12.5 (1.1)	0.19
Haemoglobin, 34 weeks PMA	11.8 (4.1)	11.5 (1.5)	11.6 (0.7)	0.98
Haemoglobin, 37 weeks PMA	16.4 (8.9)	13.3 (6.4)	9.7 (1.7)	0.42
BW (g); mean (std); range (g)	1000 (300); 500-1420	800 (200); 420-1220	700 (100); 580-1020	0.018

wk week, std standard deviation, GA gestational age, BPD bronchopulomary disease, PD patent ductus arteriosus, IVH intraventricular haemorrhage, BW birthweight, NA not available.

*Indicates statistical significance

HbF and HbA levels in preterm infants with and without ROP

	No 80P (a = 45)	Mild ROP (n = 12)	Series: 808* (n - 3)	p salar
Cost samples (s)	$n \simeq 20$	# >> 7	$\mu \rightarrow 0$	1000
Cord HNF, meant (std)	92.6 (1.5)	95.2 (0.4)	NA	0.24
Cord HbA	72(13)	8.5 (0.4)	5.5	0.48
Coad HNP/HDA	13.4 (2.5)	13.7 (0.8)	505	0.70
31 week PMA sample (n)	w = 43	4 12	a = 3.	
1897; 33 weeks PMA	67.1 (29.6)	28.2 (15.0)	从7-这 种	-0.0001
HbA, 31 works PMA	31.7 (28.9)	60.9 (14.5)	87.7 (2.7)	+0.0901
HEFHEA, 31 weeks PMA	T3 (6.4)	0.5 (0.4)	0.1 (0.041	0.0009/
34 week PMA sample (at	m = 3.5	8-9	a = 1	
HBF, 34 weeks PMA	60.1 (25.0)	23.3 (84.7)	323 (NA)	0.0805
HDA, 14 works PMA	38.4 (24.1)	74.6 (14.2)	660 (NA)	0.0804*
IBHHBA, 34 weeks PMA.	3.9 (4.6)	0.4 (0.3)	0.5 (NA)	0.065
37 week PMA sample (re)	= - 21	e = 10	#=1	
Hbit, 37 weeks PMA	00.2 (20.0)	31.9 (15)0	41.6 (NA)	0.0019
HbA, 37 wyeks PMA	39.1 (19.3)	66.3 (13.3)	57.1.(NA).	0.002
HIMPHIA, 37 weeks PMA	2.6 (2.5)	0.6 (0.5)	0.7 (NA)	0.051

Kaplan-Meier Curves for ROP Development

Cox Proportional Hazard Ratio for Development of ROP based on HbF and HbA levels and PMA

	% and hamophilis	Haming ratio (9955-CD)	, roba
HNE, J1 works PMA	HHF 1 32.6%	7.6 (2.1-24.0)	-6.00067
HDA. 31 weeks PMA	88hA 2465.7%	5.5 (1.9-16.5)	0.002*
HBF, 34 works PMA	10411225	123 (24-39.0)	0.0017
50-A. 34 weeks PMA	#8-A 2-66.0 %	7.4 (1.8-282)	0.004

Conclusion:

- Total hemoglobin did not differ amongst infants with and without ROP.
- Low HbF is predictive of ROP development.
- Decrease of fetal hemoglobin levels at 31- and 34-weeks PMA precede onset of clinically evident ROP.
- Future plans to study factors that influence HbF levels and systemic oxygenation.

Acknowledgements:

PacIFiHER Study Group

- J. Fernando Arevalo, MD, PhD
- Michael X Repka, MD, MBA
- Jing Tian, MPH
- Susan W Aucott, MD
- Jennifer Shepard, CRNP
- Megan Collins, MD
- Courtney Kraus, MD
- Julia Clemens, BA
- Mia Feller, BS
- Irina Burd, MD, PhD
- Marina Roizenblatt, MD
- Peter Gehlbach, MD, PhD
- James T Handa, MD

