Treatment Efficacy and Biocompatibility of a Biodegradable Aflibercept Microsphere-hydrogel Drug Delivery System

> Jennifer J. Kang-Mieler, PhD, FARVO Professor Department of Biomedical Engineering Illinois Institute of Technology

Financial Disclosure

• US Patents pending "Microsphere-hydrogel drug delivery system"

•NIH research grants

Summary

• We demonstrated that one injection of our 6-month aflibercept-drug delivery system (DDS) had a similar treatment efficacy compared to the multiple bolus injections of aflibercept

• There were no long-term functional and morphological abnormalities due to DDS injection

Anti-VEGF Therapy

• Intravitreal anti-VEGF therapy has become the first-line treatment and standard of care for wet AMD and other retinal vascular diseases

- All anti-VEGF agent therapies share a common limitation:
 - In order to be effective, a monthly (bimonthly) injection is required for durations of two years and often longer

Our Drug Delivery System (DDS)

- Biodegradable PLGA microspheres
 - Encapsulate Aflibercept
 - Technique to stabilize/protect the protein during manufacture
- Biodegradable thermo-responsive
 - Confines the microspheres to a specific delivery site
 - Eliminates inflammation caused by microsphere degradation
 - Acts as another barrier for sustained delivery
- Injectable via small gauge needles (26-30 gauge needle)
 - Intravitreal injection
 - Osswald and Kang-Mieler (2016)

Goal of This Study

- To evaluate the treatment efficacy and biocompatibility of our biodegradable DDS
 - Treatment efficacy of aflibercept-DDS in a laser-induced CNV rodent model
 - Biocompatibility of blank-DDS (no anti-VEGF) in a normal rodent model

Schematic experimental design for aflibercept-DDS CNV study

Representative FA Images of CNV

Effect of Aflibercept on CNV Lesion

 CNV lesion areas measured based on FA images and use of Multi-Otsu Threshold image analysis method • DDS group showed a similar reduction in CNV compared to bolus treatment group

 DDS group received an overall lower dose (1 μg total vs. 600 μg total in bolus group)

Histological Analysis of CNV Lesions

• Aflibercept-DDS group showed a similar reduction in CNV compared to the bolus aflibercept IVT treatment group

Scotopic ERG Responses Preand Post- Blank-DDS Injection

 Small transient changes in the maximal a-wave amplitude and the bwave sensitivity

• No long-term physiological effects

IOP Measurement Pre- and Post-IVT Injection of Blank-DDS

 Transient increase in IOP immediately after DDS IVT injection

• IOP returned to baseline

Endpoint Histopathology of Blank-DDS IVT Injection

 No signs of chronic inflammatory responses or foreign body reactions in both the posterior and anterior segments.

Summary

- Aflibercept-DDS group received an overall lower dose (1 μ g total vs. 600 μ g total in bolus group), but had a similar CNV reduction compared to the aflibercept-bolus IVT injection treatment group
- Transient changes in ERG and IOP were observed with no long-term effects
- •No chronic inflammation or other abnormalities were observed

Summary

• In this study, we demonstrated that our aflibercept-DDS was effective, safe and well-tolerated

•Our aflibercept-DDS is advantageous over current IVT bolus regimen in terms of less injections and lower overall dose needed

Acknowledgments

- •Wenqiang Liu
- •Aneesa Puskar Tawakol
- •Kayla Rudeen
- •William F. Mieler