INTRAVITREAL INJECTION OF ALLOGENEIC HUMAN RETINAL PROGENITOR CELLS (jCELL) FOR TREATMENT OF RETINITIS PIGMENTOSA: RESULTS FROM THE PHASE 2B TRIAL

BARUCH D. KUPPERMANN, MD, PHD
UNIVERSITY OF CALIFORNIA, IRVINE

ON BEHALF OF THE STUDY INVESTIGATORS

Financial Disclosures

CLINICAL RESEARCH

 Alcon, Allegro, Allergan, Apellis, Clearside, Genentech, GSK, Ionis, IVERIC bio, jCyte, Novartis, Regeneron

CONSULTANT

 Allegro, Allergan, Aprea, Cell Care, Dose, Eyedaptic, Galimedix, Genentech, Glaukos, Interface Biologics, IVERIC bio/Ophthotech, jCyte, Novartis, Oculis, Regeneron, Revana, Ripple Therapeutics, Theravance Biopharma

Summary

- Single Intravitreal injection of jCell (allogeneic Human Retinal Progenitor Cells) demonstrated promising results in visual acuity improvement in the per protocol population with the 6M dose (+7.4 letters) compared to sham (+2.8 letters) at Month 12 in a Phase 2b study
- Identified **target population** showed clinically significant improvement in visual acuity in the 6M dose (+16.3 letters) as compared to sham (+1.9 letters) at Month 12
 - All **functional endpoints** showed similar trends
- Intravitreal administration of jCell was well tolerated with a good safety profile
- These results support development of
 - Phase 2 study: subjects from this study will be re-dosed
 - Phase 3 study
- FDA granted Regenerative Medicine Advance Therapy (RMAT) designation for jCell

Retinitis Pigmentosa

- Diseases caused by genetic mutations resulting in progressive loss of photoreceptor cells (rods then cones),
 pathological migration of retinal pigment epithelial cells and other degenerative changes in the retina
- Rare diseases that affect 1:4000 individuals (≈ 1.9MM worldwide)
- Often diagnosed in childhood or adolescence with most patients rendered legally blind by middle age
- Beyond for a small subset of patients with RPE65 mutations, there is no current treatment for retinitis pigmentosa
 - o Gene therapy (voretigene neparvovec-rzyl) targets this specific mutation

Human Retinal Progenitor Cells (hRPC): jCell

- Intravitreal injection of allogeneic hRPC (jCell) is a novel approach for treatment of RP
- RPCs provide sustained expression of neurotrophic factors that are mediators of neuronal survival
 - Transplanted RPCs modulate the ocular microenvironment via neurotrophic factors to reduce photoreceptor death and promote function of surviving photoreceptors
- jCell's paracrine mechanism may result in significant slowing of host photoreceptor loss, agnostic to genetic subtype
 - Phase 1/2a dose escalation 12-month trial demonstrated a favorable safety profile and suggestion of treatment benefit

Study Design Phase 2b

Subjects ≥ 18 years of age with

- Clinical diagnosis of RP and ETDRS protocol BCVA of 20/80 20/800 in the study eye
- Absence of
 - Macular edema
 - Other ocular disease other than RP that impairs visual function

84* subjects randomized 1:1:1 at 3 US sites¹

Sham Control *n*=29

 $3.0 \times 10^6 \text{ jCeII}$

6.0 x 10^6 jCell n=27

Follow up visits @ 1, 7, 28 days and 3, 6, 9, 12 months post-treatment

Primary Endpoint

Mean change in BCVA from baseline to 12 months

^{*1} subject received 4.0 x 10⁶ dose per the original study design; protocol amendment changed high dose group from 4.0 x 10⁶ to 6.0 x 10⁶ 1 UCI /Gavin Herbert Eye Institute, Irvine, CA; Retina Vitreous Associates Medical Group, Los Angeles, CA; Ophthalmic Consultants of Boston, Boston, MA

Per Protocol Population

Randomized Population (n=83)	Sham (n=29)	3.0 x 10 ⁶ jCell (n=27)	6.0 x 10 ⁶ jCell (n=27)
Lost to follow-up, n	1	1	1
Pre-existing ophthalmic conditions meeting pre- specified exclusionary criteria, n	1	2*	1
Medical event unrelated to study treatment precluding Month 12 assessments, n	0	0	1
Different treatment than assignment, n	1	0	1
Per Protocol Population (n=74)	26 (89.7%)	25 (92.6%)	23 (85.2%)

^{*1} subject that was lost to follow up also had pre-existing ophthalmic conditions meeting pre-specified exclusion criteria

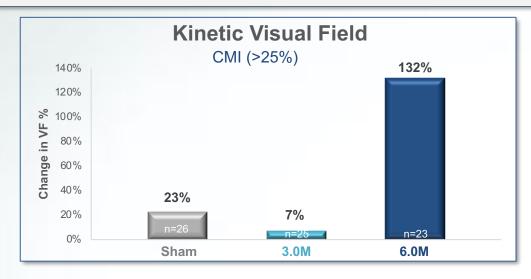
Study Endpoints

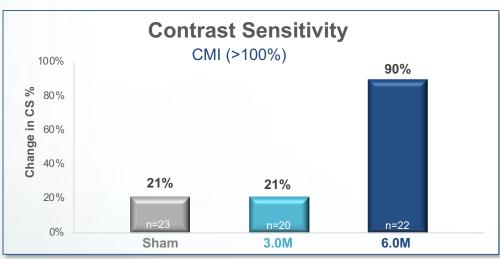
Primary Endpoint:

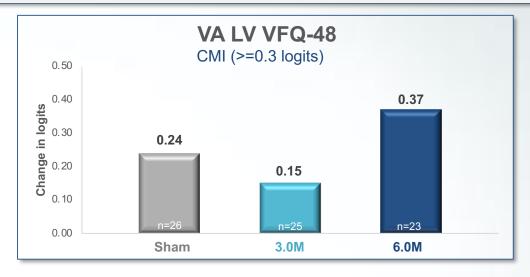
Mean change in ETDRS protocol BCVA from baseline to 12 months

Secondary Endpoints:

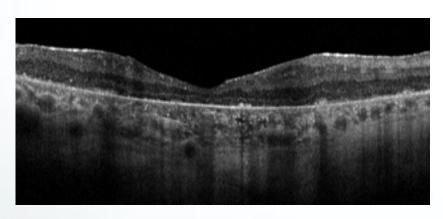
- Low Light Mobility: Identify the lowest light level at which the patient can functionally navigate the maze – Critical Illumination Level (CIL)
- Kinetic Visual Field: Map patient's "islands" of remaining vision to capture total area of field
- Contrast Sensitivity: Innovative test that utilizes computer technology to display gratings of various size and contrast
- Vision Related Quality of Life Questionnaire (VA LV VFQ-48): Measure visually impaired persons' difficulty in performing daily activities

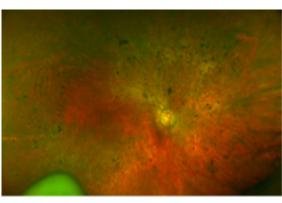

Baseline Characteristics


	Sham (n=26)	3.0 x 10 ⁶ jCell (n=25)	6.0 x 10 ⁶ jCell (n=23)	
Age, mean (SD), years	52.3 (12.0)	46.4 (14.8)	41.3 (12.4)	
Sex, n (%), female	6 (23.1)	13 (52.0)	10 (43.5)	
Race, n (%), White	20 (76.9)	21 (84.0)	17 (73.9)	
BCVA, ETDRS letters				
Mean (SD) Snellen Equivalent	27.3 (18.4) ~20/320	29.8 (17.6) ~20/250	32.5 (16.4) ~20/250	
Range Snellen Equivalent	58.0 - 1.0 ~ 20/80 - <20/800	56.0 - 3.0 ~ 20/80 - <20/800	54.0 – 2.0 ~ 20/80 - <20/800	

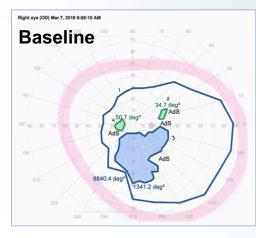

Mean Change in Best-Corrected Visual Acuity (Per Protocol Population)

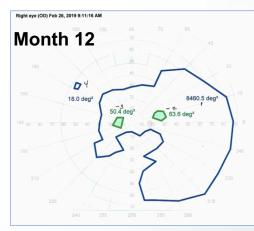
Secondary Outcomes: Mean Change in Visual Function (Per Protocol Population) *Baseline to 12 Months*



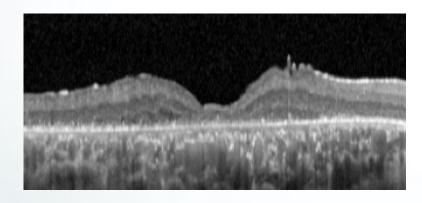


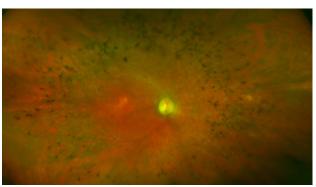
Subject 1: 6.0M, Age 41


Study Eye: OD

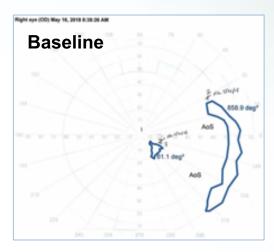

	Baseline	Month 12	Change	
BCVA, ETDRS letters Snellen Equivalent	36 ~20/200	54 ~20/80	+18	
Critical Illumination Level, lux	125	63	1 level	
Visual Field, area	7414	8365	12.82 %	
Contrast Sensitivity, peak	1.9	2.3	18.30 %	
VFQ, logit	0.24	0.45	0.2	

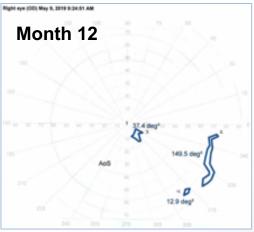
Visual Field





Subject 2: 6.0M group, Age 44


Study Eye: OD


	Baseline	Month 12	Change	
BCVA, ETDRS letters Snellen Equivalent	13 ~20/640	8 ~20/800	-5	
Critical Illumination Level, lux	Unable (no pass)	Unable (no pass)	n/a	
Visual Field, area	920	200	-78.28%	
Contrast Sensitivity, peak	1.5	1.3	-12.78%	
VFQ, logit	-0.456	-0.498	-0.043	

Visual Field

Identification of Target Population

Criteria established for subjects that can't be reliably measured based on literature and validation study*

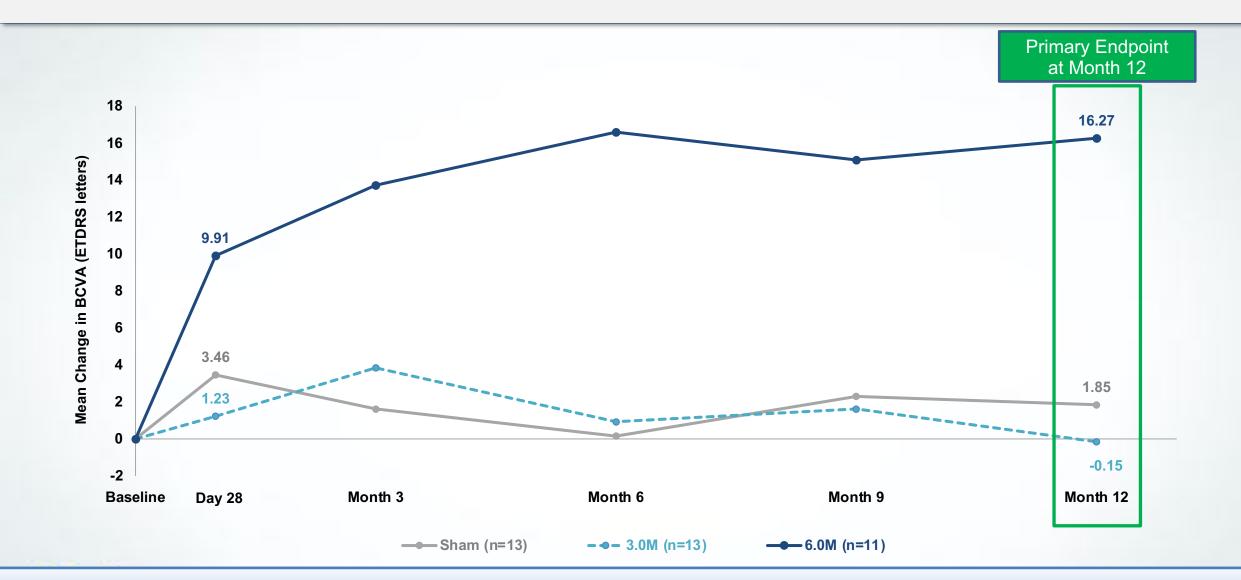
Inability to maintain fixation

- No central vision
 - Peripheral islands or unsteady fixation scotoma/nystagmus unreliable

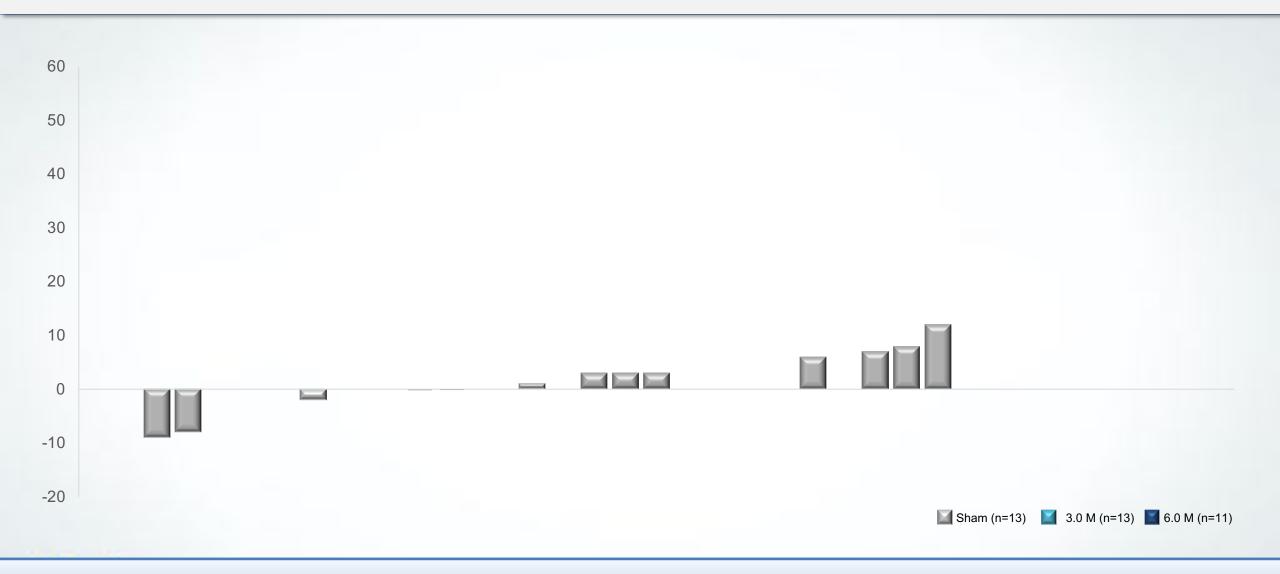
- Constricted field <12 degrees
 - VF Variability, same visit test-retest¹
 - 19.2% for VF >14 degrees,
 - 32.8% when include subjects with <14 degrees
 - Validation study* (n=20)
 - Mobility test variability in 5 subjects with VF<12 degrees

Study eye significantly worse than fellow eye - >3 lines difference - Worse eye is variable and can improve in function when it has been suppressed from disuse^{2,3,4,5,6} 20/100 20/400

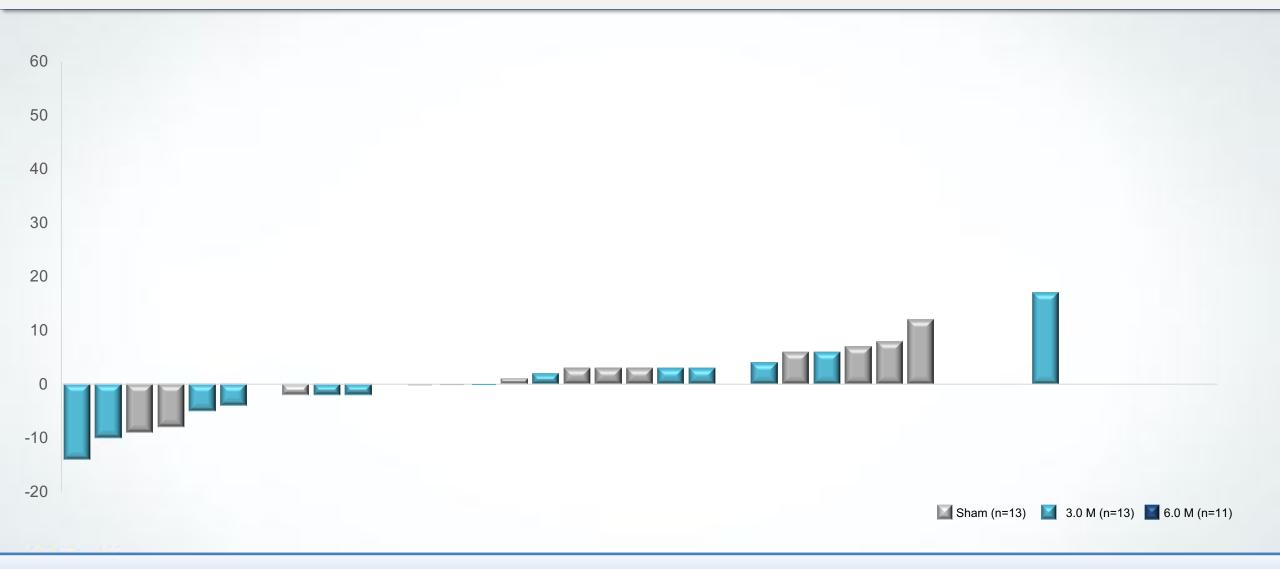
>15 letters difference between eyes

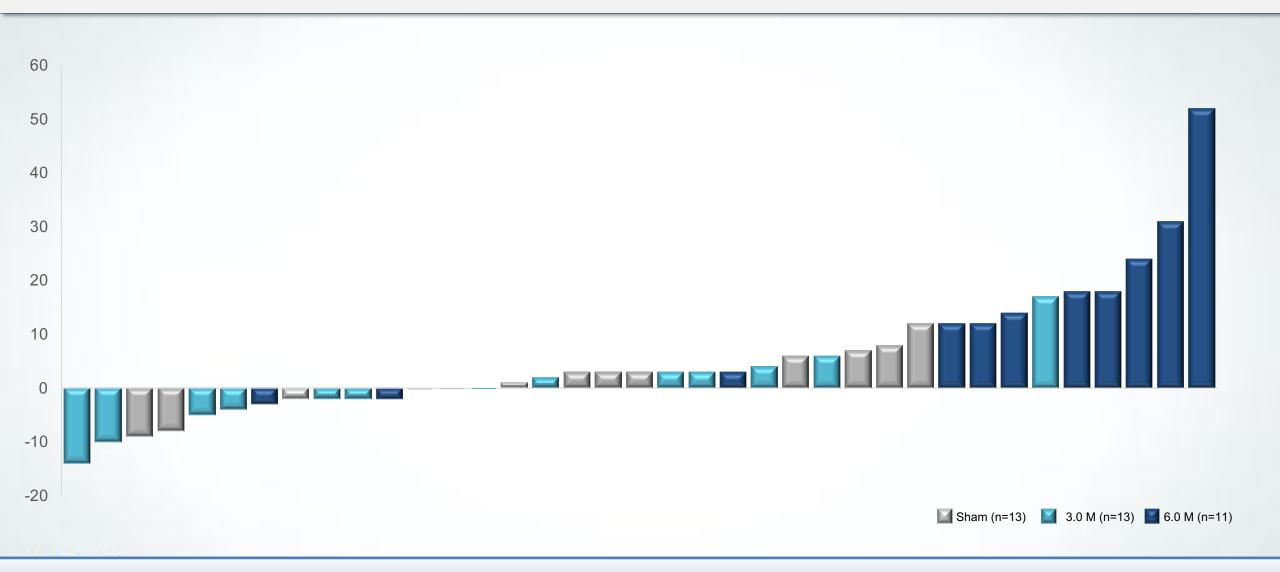

*Data on file

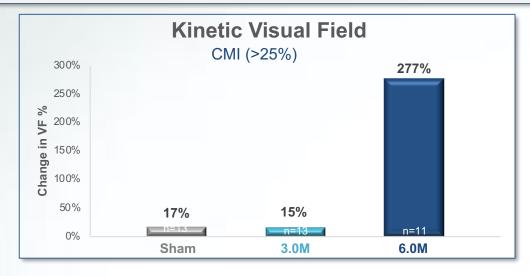
Target Population

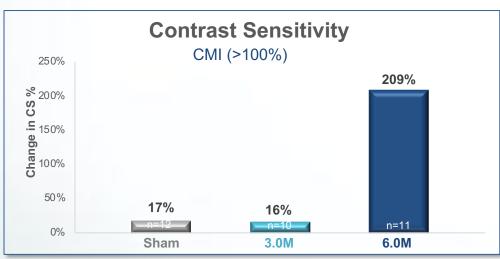

Per protocol population (n=74)	Sham (n=26)	3.0 x 10 ⁶ jCell (n=25)	6.0 x 10 ⁶ jCell (n=23)
No central vision, n	7	3	3
Constricted field <12 degrees, n	4	1	4
>3 lines difference between fellow eye and study eye, n	5	8	7
Target Population (n=37)	13 (50.0%)	13 (52.0%)	11 (47.8%)

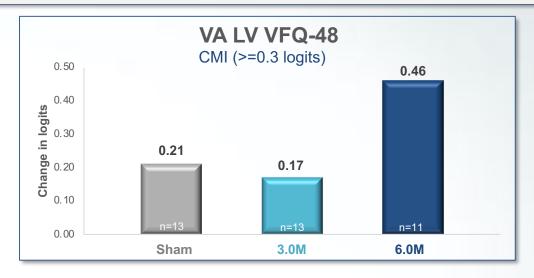
Subjects meeting multiple criteria: 3 subjects in sham group; 2 subjects in 6M group

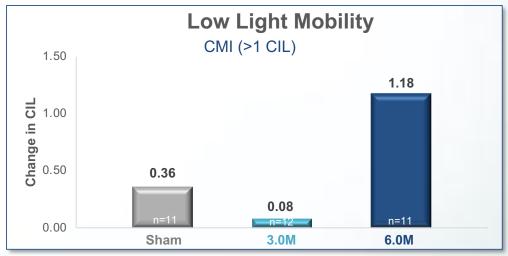

Mean Change in Best-Corrected Visual Acuity (Target Population)


Change in Best-Corrected Visual Acuity (Target Population)


Change in Best-Corrected Visual Acuity (Target Population)




Change in Best-Corrected Visual Acuity (Target Population)



Mean Change in Visual Function (Target Population)

Safety:

Treatment Emergent Adverse Events Related To Study Drug Through Month 12

	Sham (<i>N</i> =29)	3.0 x 10 ⁶ jCell (N= 27)	6.0 x 10 ⁶ jCell (N= 27)
Subjects with at least one drug-related TEAE, n (%)	7 (24.1%)	14 (51.9%)	13 (48.1%)
Preferred Term	<u>'</u>	•	
Altered visual depth perception	0	0	1 (3.7 %)
Anterior chamber flare	0	0	3 (11.1 %)
Anterior chamber inflammation	0	0	1 (3.7 %)
Conjunctival hemorrhage	5 (17.2 %)	8 (29.6 %)	6 (22.2 %)
Cystoid macular edema	0	1 (3.7 %)	0
Eye irritation	0	0	2 (7.4 %)
Eye pain	0	3 (11.1 %)	1 (3.7 %)
Intraocular Pressure Increased	1 (3.4 %)	1 (3.7 %)	1 (3.7 %)
Iridocyclitis	0	1 (3.7 %)	0
Iris adhesions	0	1 (3.7 %)	1 (3.7 %)
Iris disorder	0	0	1 (3.7 %)
Lenticular opacities	0	1 (3.7 %)	0
Nystagmus	0	1 (3.7 %)	0
Ocular hyperaemia	0	0	1 (3.7 %)
Ocular hypertension	0	1 (3.7 %)	0
Post procedural discomfort	0	2 (7.4%)	1 (3.7 %)
Pruritus	0	1 (3.7 %)	0
Punctate keratitis	0	1 (3.7 %)	0
Retinal detachment	0	1 (3.7 %)	0
Uveitis	0	1 (3.7 %)	0
Visual acuity reduced	1 (3.4 %)	1 (3.7 %)	0
Vitreous adhesions	0	1 (3.7 %)	0
Vitreous fibrin	0	0	1 (3.7 %)
Vitreous floaters	0	1 (3.7 %)	0
Vitritis	0	1 (3.7 %)	0

Safety: Intraocular Inflammation Through Month 12 Visit

	Sham (N=29)	3.0 x 10 ⁶ jCell (N= 27)	6.0 x 10 ⁶ jCell (N= 27)
Number of subjects with Intraocular Inflammation, n (%)			
Anterior chamber flare	0	0	3 (11.1 %)
Anterior chamber inflammation	0	0	1 (3.7 %)
Iridocyclitis	0	1 (3.7 %)	0
Uveitis	0	1 (3.7 %)	0

Safety Population (n=83)

Safety: Serious Adverse Events Through Month 12

	Sham (N=29)	3.0 x 10 ⁶ jCell (N= 27)	6.0 x 10 ⁶ jCell (N= 27)
Subjects with at least one SAE, n (%)	0	1 (3.7%)*	0
Ocular hypertension*	0	1 (3.7%)*	0
Systemic	0	0	0

^{*}Reported as related to study drug and was resolved with treatment

Conclusion

- Single Intravitreal injection of jCell (allogeneic Human Retinal Progenitor Cells) demonstrated promising results in visual acuity improvement in the per protocol population with the 6M dose (+7.4 letters) compared to sham (+2.8 letters) at Month 12 in a Phase 2b study
- Identified **target population** showed clinically significant improvement in visual acuity in the 6M dose (+16.3 letters) as compared to sham (+1.9 letters) at Month 12
 - All **functional endpoints** showed similar trends
- Intravitreal administration of jCell was well tolerated with a good safety profile
- These results support development of
 - Phase 2 study: subjects from this study will be re-dosed
 - Phase 3 study
- FDA granted Regenerative Medicine Advance Therapy (RMAT) designation for jCell

Acknowledgements

Primary Investigators

- Anthony Joseph, MD
- David Liao, MD
- Mitul Mehta, MD, MS

Scientific Advisory Board

- David Boyer, MD
- Jeff Heier, MD
- Peter Kaiser, MD
- Baruch Kuppermann, MD, PhD

jCell Scientific Team

- Rebecca Kammer, OD, PhD
- Henry Klassen, MD, PhD
- Bonnie Mills, PhD
- Jing Yang, MD, PhD

Thank you!

