Automated Vessel Density Detection in Fluorescein Angiography Images Correlates With Vision in Proliferative Diabetic Retinopathy

Ajay E. Kuriyan, MD, MS1,2,3, Mohammad H. Bawany4, Rajeev S. Ramchandran, MD2, Li Ding5, Charles C. Wykoff, MD, PhD6,7, Gaurav Sharma, PhD5

1Retina Service/Mid Atlantic Retina, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA
2Flaum Eye Institute, Department of Ophthalmology, University of Rochester Medical Center, Rochester, New York
3Center for Visual Science, University of Rochester, Rochester, NY
4University of Rochester School of Medicine and Dentistry, Rochester, New York
5Department of Electrical and Computer Engineering, University of Rochester, Rochester, New York
6Retina Consultants of Houston, Houston, Texas
7Blanton Eye Institute, Houston Methodist Hospital & Weill Cornell Medical College, Houston, TX,
The research presented in this manuscript made use of images from the RECOVERY study. While the RECOVERY study was funded by Regeneron, the work presented here was not supported by any funding from Regeneron or any other commercial entity.

Ajay Kuriyan receives consulting fees from Genentech/Roche, Regeneron, Alimera Sciences, Allergan, Bausch Health. He also receives grants from Second Sight and Genentech/Roche.

Charles Wykoff has received consulting fees from Adverum, Bayer, PolyPhotonix, RecensMedical, Kodiak, Alimera Sciences, Allegro, DORC, ONL Therapeutics, Allergan, Apellis, Clearside Biomedical, EyePoint (formerly pSiva), Genentech/Roche, Novartis, Regenxbio, Santen, Regeneron, Aerpio, Fosun, Iveric Bio (formerly Ophthotech), and Takeda. CW also has grants from Neurotech, Opthea, Samsung, and Chengdu Kanghong.
Summary

• We developed an algorithm that can quickly and reliably quantify retinal vessel density from FA images

• We found a positive correlation between computed vessel density and BCVA in PDR patients, but not CRT
Retinal Non-Perfusion and PDR
Assessing Retinal Blood Flow

Fluorescein Angiography
Optical Coherence Tomography Angiography

Arya and Waheed, 2018
Shortcomings of Quantifying Retinal Vessels

Limitation of the peripheral retina captured on OCTA
Inability to quantify FA beyond manual vessel detection

Sadda, et al 2015
Contrast Affects Vessel Visualization
Automate vessel detection and quantification from FA images

Correlate vessel density and vision in diabetic retinopathy
We performed a secondary analysis of the RECOVERY trial.

We designed an algorithm to detect retinal vessels from FA images.
We designed an algorithm to detect retinal vessels from FA images.
Secondary analysis of the RECOVERY trial images
Automated vessel detection is unaffected by contrast.

Vessel density calculations are reliable and fast.

Differences in vessel density correlate with BCVA, but not CRT.
Automated vessel detection is unaffected by contrast
Vessel density calculations are reliable and fast.
Vessel density correlates with BCVA

\[r = 0.407, \quad p=0.0075 \]
Vessel density correlates with BCVA

BCVA=90 (a) BCVA=86 (b) BCVA=72 (c) BCVA=67 (d)
Vessel density does not correlate with CRT

\[r = 0.0533, \ p = 0.7376 \]
Our algorithm quickly and reliably quantifies retinal vessel density from FA images.

We found a positive correlation between computed vessel density and BCVA in PDR patients, but not CRT.

Future directions include studying longitudinal vessel density changes.
THANK YOU

Mohammad Husain Bawany, BA
Li Ding, BS, MS
Rajeev Ramchandran, MD, MBA
Gaurav Sharma, PhD
Charlie Wykoff, MD, PhD

Contact: Ajay.Kuriyan@gmail.com