First Results of a Photovoltaic Subretinal Prothesis for Restoration of Central Vision in Atrophic Dry Age-Related Macular Degeneration in the United States

Joseph N Martel¹, Daniel Palanker², Yannick Le Mer³, Mahiul Muqit⁴, Ninel Z Gregori⁵, Andrew W Eller¹, Jose A Sahel¹

1. University of Pittsburgh Eye Center, Pittsburgh PA, USA
2. Stanford University, Stanford CA, USA
3. Foundation Ophthalmologique A. de Rothschild, Paris France
4. Moorfields Eye Hospital, London, UK
5. Bascom Palmer Eye Institute, Miami FL, USA
Financial Disclosure

• Y Le Mer, M Muqit, D Palanker are consultants for Pixium-Vision (Paris, France)
• D Palanker is the inventor of the PRIMA system. The patents are exclusively licensed by Stanford University to Pixium Vision.
• JA Sahel is a co-founder of Pixium Vision
• AW Eller and JN Martel: no financial interests
Photovoltaic Restoration of Central Vision in Advanced Atrophic AMD

PRIMA implant
- Array of subretinal photovoltaic electrodes within geographic atrophy
 - 2-mm wide, 30-μm thick wireless photovoltaic prosthesis (PRIMA, Pixium Vision, Paris, France), containing 378 pixels
- Electrical stimulation transmitted to RGCs which converts them to action potentials
- Wireless activation with near-infrared light

Early Results
- 2 subjects have been implanted with the wireless photovoltaic subretinal prosthesis.
- Patients perceived visual sensitivity and bar orientation recognition in the former central scotoma without loss of residual natural acuity.
- No study-related serious adverse events have been observed at 3-month follow-up.
PRIMA system
Electrical stimulation

1. Glasses with camera and mirror projector
2. Near Infra-Red light source (in Pocket Computer)
3. Near Infra-Red light pattern
4. Near Infra-red light pattern
5. Sub-retinal PRIMA Implant

Chip is 2x2 mm and 30μm, the retina above the chip is ~0.1 mm thick, and has no photoreceptors
Early feasibility study design: safety and functionality

STUDY

Restoration of visual function in patients with advanced atrophic dry age related macular degeneration using the PRIMA system: open-label, non-randomized

CRITERIA

- 5 eyes of 5 patients
- VA < 20/400 (LogMar < 1.3)
- GA of at least 3 DD
- No CNV history
- No light perception in the atrophic area

Microperimetry:
- Confirm the absolute scotoma in the atrophic area
- Identify the main PRL to ensure its preservation

PRIMARY ENDPOINTS

- Safety
- Elicitation of visual perception by electrical stimulation of the PRIMA implant
- Near visual acuity
Surgery Video
Preliminary Results

• 2 patients successfully implanted in 2020
• Recruitment is ongoing: University of Pittsburgh and Bascom Palmer
• Surgery duration ~ 2 hours
 • 1 patient GA, 1 patient local
• No decrease in residual natural vision compared to pre-operative visual acuity
• Vision training and low vision rehab sessions begun but then delayed due to COVID-19 pandemic
• Both patient perceived visual sensitivity and bar orientation recognition in the former central scotoma without loss of residual natural acuity
• Further testing of prosthetic vision is planned, including bar orientation, letter recognition, and acuity.
Future Directions

• Worldwide multicenter pivotal study is planned for early 2021
• Higher resolution implants with smaller pixels are being developed and tested in preclinical studies (Palanker’s group at Stanford)
• Engineering advancements to visual interface and in-home use
• May have broad applicability to other retinal degenerations (RP, Stargardt)