

# Constraint variables of inherited retinal diseases in gnomAD v2.1 Jose S. Pulido, MD,MS,MPH, MBA Larry A. Donoso Endowed Chair Director of the Bower Laboratory for Translational Medicine

Vickie and Jack Farber Vision Research Center at Wills Eye Hospital





- Gavin Arno, PhD
- Hwei Wuen Chan, MD
- Alex Tanner, MD
- Elena Schiff, PhD
- Andrew R. Webster, MD, FRCOphth
- Omar Mahroo, PhD, FRCOphth







Canonical transcript ID ENST00000370225

Genome build GRCh37 / hg19 Ensembligene ID ENSG00000198691 Region 1:94458394-94586689 References Ensembl, UCSC Browser, and more

#### Constraint o

| Category   | Exp. SNVs    | Obs. SNVs   | Constraint metrics                                                    |
|------------|--------------|-------------|-----------------------------------------------------------------------|
| Synonymous | 497.4        | 542         | Z = <u>-1.57</u><br>o/e = <u>1.09</u> ( <u>1.01</u> - <u>1.17</u> ) 0 |
| Missense   | 1240.8       | 1306        | Z = <u>-0.66</u><br>o/e = <u>1.05 (1 - 1.1</u> ) 0P1                  |
| pLoF       | <u>116.6</u> | 89          | pLI = <u>0</u><br>ove = <u>0.76 (0.64</u> - 0.91) 0 - 0 1             |
|            |              | exorne 🔲 pe | nome Metric Mean • Save pl                                            |



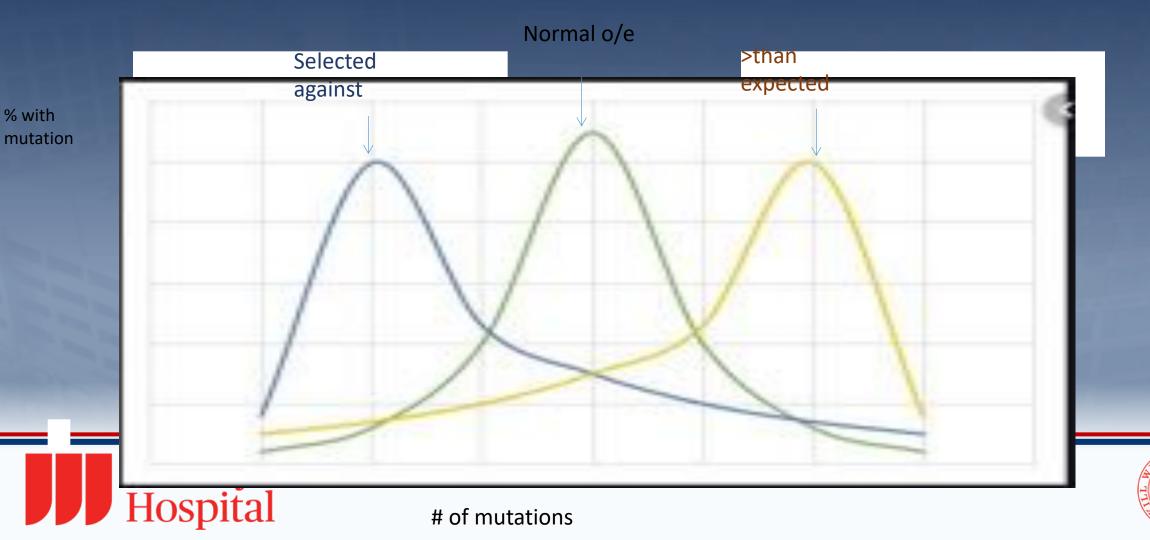


#### gnomAD

- 141, 456 individuals
- 125,748 exomes and 15,708 genomes from unrelated individuals aligned against the GRCh37
- The average human DNA mutation rate is estimated to be approximately 2.5 x 10(-8) mutations per nucleotide site or 175 mutations per diploid genome per generation
- Total 24,754,800 new mutations ct GRCh37 in just this generation






### gnomAD

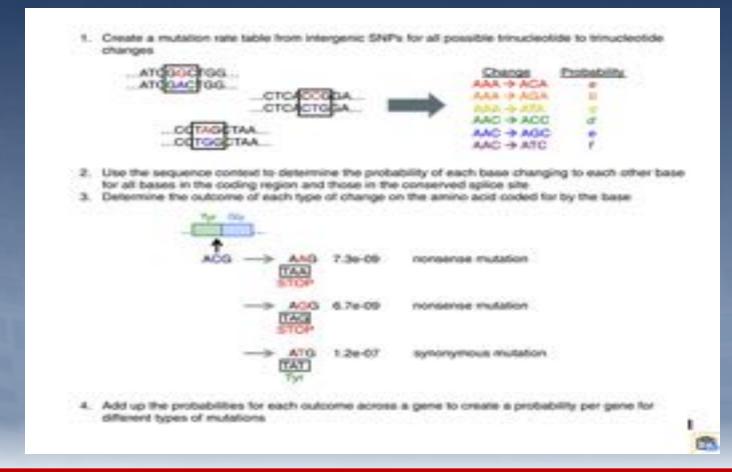
- If no mutation at any one site, then one peak but the mutations should be dependent upon the number of bases per gene.
- CT GrCh37, there should be a one tailed curve of number of mutations,
- BUT the "reference is actually the human/chimp primate and the dNonsyn/dsyn for every gene is checked as the expected bell shaped curve.
- If the shape shifts towards more mutations then the site is a hot spot for mutations or there is selection for mutation
- if the shape shifts to less mutations then there is selection against mutation or the site is protected against mutation





# Normal o/e vs selected against and "selected for or hot spot"




# Probability of loss of function intolerance (pli)

- Loss-of-function variants include frameshifting and stop variants and are of particular interest because of their potentially profound impact on the mRNA transcript and translated protein
- >0.9 is considered significant in EXAC and still used but now also
- 0/e upper CI<0.4 (no CI in the past)</li>
- We have used both
- A framework for the interpretation of de novo mutation in human disease Kaitlin E Samocha Nat Gen 2014





#### PLI continued







#### HI

 Huang and colleagues made this metric by using properties of established haploinsufficient and haplosufficient genes to train a predictive model. The properties included in the final model were "dN/dS between human and macaque, promoter sequence, embryonic expression and network proximity to known HI [haploinsufficient] genes





#### pHI

The upper portion of the figure is a schematic demonstration of the calculation of the deletion-based LOD score. The contribution of genes with high p(HI) is accordingly weighted in a probabilistic way. The deletion with the largest LOD score in each individual is recorded and their distribution is shown in the lower portion of the figure. The distribution of maximal LOD scores of 2,322 control individuals are shown in green and the distribution of LOD scores of 487 pathogenic de novo deletions from DECIPHER are in red. Using the control distribution as the null, the probability a deletion is pathogenic can be assessed.

| gene-based p(HI) | 0.9                         | 0.2            | 0.3 | 0.5 | 0.1 |
|------------------|-----------------------------|----------------|-----|-----|-----|
| gene-based p(HS) | 0.1                         | 0.8            | 0.7 | 0.5 | 0.9 |
|                  | In(0.9/0.1) = 2.2, p = 0.01 | 7              |     |     |     |
| unient based     | In((1-0.1x0.8)/(0.1x0.8)) = | 2.4. p = 0.016 |     |     |     |

#### Characterising and Predicting Haploinsufficiency in the Human Genome

Ni Huang, Insuk Lee, Edward M. Marcotte, Matthew E. Hurles 🖾

Published: October 14, 2010 • https://doi.org/10.1371/journal.pgen.1001154





# pli further information-related to HI

#### Analysis of protein-coding genetic variation in 60,706 humans

Monkol Lek, Konrad J. Karczewski, [...] Exome Aggregation Consortium

Nature 536, 285-291(2016) Cite this article

The final metric, pLI (the probability of being loss-of-function intolerant):

 $pLI_i = \frac{p(Z_i = HI \mid \pi_{NI}, PTV_i)}{\sum_c p(Z_i = c \mid \pi_c, PTV_i)}$ 

The closer pLI is to 1, the more likely the transcript is loss-of-function (LoF) intolerant. The overall distribution of pLI is fairly bimodal, with most genes looking either tolerant or intolerant of protein-truncating variation (Supplementary Figure 4a). Additionally, pLI is only modestly correlated with transcript length (r = 0.1668). However, we find that the most highly LoE-intolerant genes (pLI  $\ge$  0.9) are significantly longer than all genes (Wilcox p < 10<sup>-50</sup>). The least intolerant genes are also significantly—but to a lesser extent—larger than all genes (Wilcox p < 10<sup>-3</sup>).

doi:10.1038/nature19057



### Methods

- 312 genes found to be associated with IRD on RetNet were evaluated for their constraint variables using gnomAD v2.1 and DECIPHER
- For LOF variants constraint was PLI >0.9 and highest CI was 0.35 for o/e
- DECIPHER is based on children who were sequenced-HI<10 and PLI>0.9
- For MS and synonymous variants Z>2.99 or <-2.99 ie less than .0014 in the distribution





#### DECIPHER

- suffering from Rare Disease
- 33,000 cases from 250 centers
- Uses HI (haploinsufficiency index) 0-10% and pli>0.9 quite haploinsufficient
- HI=known haploinsufficient genes and genes disrupted by unambiguous loss-of-function variants in at least two apparently healthy individuals. Percentages refer to genome-wide percentiles of genes ranked according to their haploinsufficient score.
- Pli= Genes with high pLI scores (pLI ≥ 0.9) are extremely LoF intolerant, whereby genes with low pLI scores (pLI ≤ 0.1) are LoF tolerant.

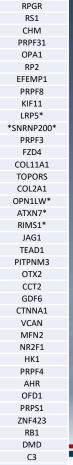




# Rules

- We also show that longer genes are, in general, more depleted of protein-truncating variation (observed/expected), which can explain the enrichment of long genes in the set of genes with pLI ≥ 0.9. There is a relationship between deciles of gene length (bins of increasing gene length) and the observed depletion of PTVs in that bin: longer genes (deciles closer to 1) have a significantly lower rate of observed/expected (p < 10-50)</li>
- Given that the X chromosome is hemizygous in males, we expect that genes on the X would be more constrained than those on autosomes. As expected, we find the genes on the X chromosomes are significantly more constrained than those genes on the autosomes for missense and loss-of-function (synonymous p = 0.0223; missense p = 4.43x10-8; loss-of-function p = 2.50x10-75). The high correlation between the observed and expected number of synonymous variants on the X chromosome (r = 0.9677 vs 0.9777 for autosomes) indicates that this difference in constraint is not due to a calibration issue






### Results-either in gnomAD and/or DECIPHER





# Loss of function variants-these are selected against-39 genes









# Gene Ontology Panther (GO Panther) overrepresentation test

| the second s | the set of  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Anapytus Summary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Preutile report in publication 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| and the second se                                      | a service of the serv |  |

WIIISEye

osnital

| Analysis Type: PANTHER Overre   | presentation Test (Releas  | ed 20190711)                                   |               |
|---------------------------------|----------------------------|------------------------------------------------|---------------|
| Annotation Version and Release  | Date: GO Ontology data     | base Released 2019-12-09                       |               |
| Analyzed List: C                | Change                     |                                                |               |
| Reference List: H               | lomo sapiens (all genes in | database)                                      | Change        |
| Annotation Data Set: GO biologi | cal process complete       | • •                                            |               |
| Test Type: @ Fisher's Exact 0   | Binomial                   |                                                |               |
| Correction: * Calculate False D | iscovery Rate 🛛 Use th     | e Bonferroni correction for multiple testing 🕐 | No correction |
| To atlant                       |                            |                                                |               |
|                                 | Reference list             | Client Text Box Input                          |               |
| Iniquely Mapped IDS:            | 20995 out of 20996         | 39 out of 39                                   |               |
| Jnmapped IDs:                   | Q                          | 2                                              |               |
| Multiple mapping information:   | 0                          | 0                                              |               |



• *P-value* is the probability or chance of seeing at least x number of genes out of the total n genes in the list annotated to a particular GO term, given the proportion of genes in the whole genome that are annotated to that GO Term. That is, the GO terms shared by the genes in the user's list are compared to the background distribution of annotation. The closer the p-value is to zero, the more significant the particular GO term associated with the group of genes is (i.e. the less likely the observed annotation of the particular GO term to a group of genes occurs by chance).





# Norrin signalling-2, Spliceosomal 3

| GO biological process complete                   | 1     | 庄   | aspected | Fold Enrichment | +1- | Taw P value | EDR      |
|--------------------------------------------------|-------|-----|----------|-----------------|-----|-------------|----------|
| Norrin signaling pathway                         | 3     | 2   | .01      | > 100           | +   | 3.34E-05    | 1.40E-02 |
| Scellufar.process                                | 14677 | 39  | 27.26    | 1.43            | ٠   | 1.38E-06    | 1.16E-03 |
| refinal blood vessel momhogenesis                | 0     | 2   | .01      | > 100           | +   | 9.31E-05    | 2.97E-02 |
| System development                               | 4445  | 23  | 8.26     | 2.79            | +   | 3.26E-07    | 4.00E-04 |
| Sanatomical structure development                | 5402  | 25  | 10.15    | 2.46            | +   | 6.74E-07    | 6.31E-04 |
| hevelopmental process                            | 5912  | 27  | 10.98    | 2.46            | +   | 1.26E-07    | 2.00E-04 |
| multicellular organism development               | 5073  | 24  | 9.42     | 2.55            | +   | 7.88E-07    | 6.97E-04 |
| multicellular organismal process                 | 7019  | 31  | 13.04    | 2.38            | +   | 4.97E-09    | 2.64E-05 |
| Secting development in camera-type eye           | 147   | 5   | .27      | 18.31           | +   | 8.71E-06    | 4.95E-03 |
| Scamera-type eve development                     | 317   | 8   | .59      | 13.59           | +   | 1.21E-07    | 2.40E-04 |
| heye development                                 | 357   | 8   | .66      | 12.06           |     | 2.93E-07    | 3.89E-04 |
| Svisual system development                       | 301   | 2   | .67      | 13.42           | +   | 1.95E-08    | 7.75E-05 |
| +sensory system development                      | 305   | 2   | .68      | 13.24           | +   | 2.18E-08    | 6.96E-05 |
| *sensory.organ.development                       | 555   | 10  | 1.03     | 9.70            | +   | 5.69E-08    | 1.29E-04 |
| Variatomical structure momhogenesis              | 2184  | 15  | 4.06     | 3.70            |     | 4.06E-06    | 2.69E-03 |
| spliceosomal tri-snRNP complex assembly          | 12    | 3   | 02       | > 100           | +   | 2.64E-06    | 1.91E-03 |
| hispliceosomal snRNP assembly                    | 38    | 3   | 07       | 42.50           |     | 5.98E-05    | 2.03E-02 |
| Sprotein-containing complex subunit organization | 1655  | .11 | 3.08     | 3.58            | ٠   | 1.57E-04    | 4.63E-02 |
| Scellular component organization                 | 5646  | 26  | 10.49    | 2.48            | +   | 2.55E-07    | 3 70E-04 |





| visual perception                                   | 220  | 11 | .41  | 26.92 | + | 2.82E-13 | 4.49E-09 |
|-----------------------------------------------------|------|----|------|-------|---|----------|----------|
| Insensory perception of light stimulus              | 223  | 11 | .41  | 26.56 | + | 3.25E-13 | 2.59E-09 |
| *sensory perception                                 | 970  | 12 | 1.80 | 6.66  | + | 1.22E-07 | 2.15E-04 |
| Anervous system process                             | 1392 | 12 | 2.59 | 4.64  |   | 5.38E-06 | 3.42E-03 |
| *system process                                     | 1974 | 14 | 3.67 | 3.82  | + | 6.71E-06 | 3.95E-03 |
| camera-type eve morphopenesis                       | 122  | 5  | .23  | 22.06 | + | 3.62E-06 | 2.51E-03 |
| heve morphopenesis                                  | 151  | 6  | .28  | 21.39 | + | 4.18E-07 | 4.75E-04 |
| *sensory.organ.morphopenesis                        | 255  | 8  | 49   | 16.25 |   | 3.15E-08 | 8.37E-05 |
| Hanimal organ morphogenesis                         | 977  | 9  | 1.81 | 4.96  | + | 6.26E-05 | 2.08E-02 |
| ossification                                        | 263  | 5  | .49  | 10.23 | + | 1.31E-04 | 4.00E-02 |
| regulation of neurogenesis                          | 835  | 8  | 1.55 | 5.16  |   | 1.31E-04 | 3.94E-02 |
| hegulation of developmental process                 | 2525 | 14 | 4.88 | 2.87  | + | 1.62E-04 | 4.69E-02 |
| Progulation of multicellular organismal development | 2067 | 13 | 3.84 | 3.39  |   | 5.73E-05 | 2.03E-02 |
| Negulation of multicellular organismal process      | 3185 | 17 | 5.92 | 2.87  | + | 2.13E-05 | 1.06E-02 |
| Independent of neurons                              | 1565 | 12 | 2.91 | 4.13  |   | 1.75E-05 | 9.01E-03 |
| *neutogenosis                                       | 1567 | 13 | 3.10 | 4.20  | + | 5.79E-06 | 3.55E-03 |
| Intervous system development                        | 2374 | 16 | 4.41 | 3.63  | + | 2.12E-06 | 1.61E-03 |
| +cell differentiation                               | 3738 | 18 | 6.94 | 2.59  | + | 4.37E-05 | 1.74E-02 |
| Scellular developmental process                     | 3831 | 19 | 7.12 | 2.67  | + | 1.47E-05 | 8.08E-03 |
| positive regulation of cell differentiation         | 990  | 9  | 1.84 | 4.89  |   | 6.92E-05 | 2 25E-02 |





| positive regulation of cell differentiation                              | 990  | 9   | 1.84 | 4.89 | +   | 6.92E-05 | 2.25E-02 |
|--------------------------------------------------------------------------|------|-----|------|------|-----|----------|----------|
| Hoositive regulation of developmental process                            | 1390 | .11 | 2.58 | 4.26 | . + | 3.25E-05 | 1.40E-02 |
| positive regulation of transcription. DNA-templated                      | 1564 | 12  | 2.91 | 4.13 | +   | 1.74E-05 | 9.25E-03 |
| Hoositive regulation of gene expression                                  | 2034 | 13  | 3.78 | 3.44 | +   | 4.84E-05 | 1.84E-02 |
| Positive regulation of nucleic acid-templated transcription              | 1550 | 12  | 3.08 | 3.89 |     | 3.15E-05 | 1.43E-02 |
| Spositive regulation of RNA biosynthetic process                         | 1661 | 12  | 3.09 | 3.89 | +   | 3.17E-05 | 1.40E-02 |
| *positive regulation of cellular biosynthetic process                    | 2023 | 13  | 3.76 | 3.46 |     | 4 58E-05 | 1.78E-02 |
| •positive regulation of biosynthetic process                             | 2055 | 13  | 3.82 | 3.41 | +   | 5.39E-05 | 1.95E-02 |
| *positive regulation of RNA metabolic process                            | 1748 | 12  | 3.25 | 3.70 | +   | 5.22E-05 | 1.93E-02 |
| *positive regulation of nucleobase-containing compound metabolic process | 1912 | 13  | 3.55 | 3.66 |     | 2.53E-05 | 1.22E-02 |
| *positive regulation of macromolecule biosynthetic process               | 1932 | 13  | 3.59 | 3.62 |     | 2.82E-05 | 1.32E-02 |
| positive regulation of multicellular organismal process                  | 1771 | 12  | 3.29 | 3.65 | +   | 5.93E-05 | 2 05E-02 |
| macromolecule localization                                               | 2554 | 14  | 4.74 | 2.95 |     | 1.21E-04 | 3.76E-02 |

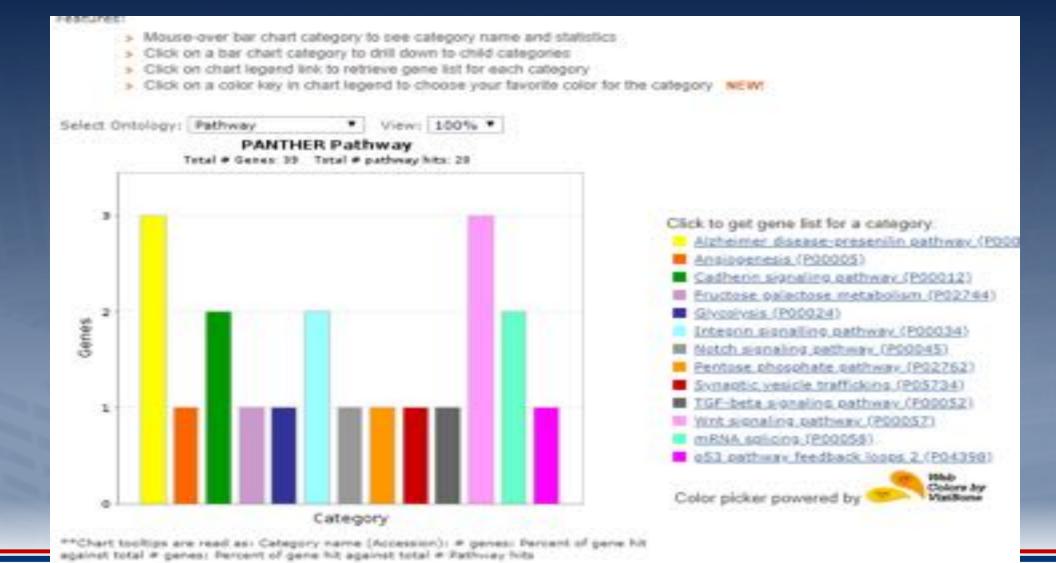




# Norrin signal(l)ing

| Hits | 1-2 of    | 2 [ page: (1) ] Number of mapped ids found | 2          |                                                                                         |                                                                                     |                                                                        |                 |
|------|-----------|--------------------------------------------|------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------|
| etr  | <u>a1</u> | Gene ID                                    | Mapped IDs | Gene<br>Name<br>Gene<br>Symbol<br>Ortholog                                              | PANTHER<br>Eamily:Subfamily                                                         | PANTHER Protein Class                                                  | Soecies         |
| Ш.   | 1.        | HUMANIHGNC-4042/UniProteits-09ULV1         | FZD4       | Frizzled-4<br>EZDH<br>artholog                                                          | FRIZZLED-4<br>IPTHR11209:SF23)                                                      | G-orotain coupled receptor<br>protease inhibitor<br>signaling molecule | Homo<br>sapiens |
|      | 2,        | HURANIHGNC-6697IUniProtei8-075197          |            | Low-<br>density<br>lipoprotein<br>receptor-<br>related<br>protein 5<br>LRPS<br>ortholog | LOW-DENSITY<br>LIPOPROTEIN<br>EECEPTOR:<br>BELATED PROTEIN<br>S<br>(PTHR46513:SE16) |                                                                        | Homo<br>sapiens |






# Spliceosomal complex assembly

|   | -  | Gene ID                            | Mapped IDs | Gene Name<br>Gene Symbol<br>Ortholog                                       | PANTHER<br>Eamily/Subfamily                                             | PANTHER Protein<br>Class | Species         |
|---|----|------------------------------------|------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------|-----------------|
| 6 | 1. | HUMANIHGNC-17342/UniProtKB-06P209  | PRPF8      | Pre-mRNA-<br>processing-<br>splicing factor 8<br>PRPF8<br>prthplog         | PRE-MRNA-<br>PROCESSING-<br>SPLICING FACTOR 8<br>(PTHR11140:SP0)        | mRMA solicing factor     | Homo<br>sapiens |
|   |    | HUMANIHGNC-154451UniProtots-DomWY3 | PRPF31     | U4/U6 small<br>nuclear<br>ribonucleoprotein<br>Prp31<br>PRPF31<br>prtholog | U4706 SMALL<br>NUCLEAS<br>BUBONUCLEOPROTEIN<br>PR221<br>(PTHR12904(SEQ) | milità solicina factor   | Homo<br>sapiens |
|   | 3. | HUMANIHGNC+17348/UmProtx8+043395   | PRPF3      | U4/U6 small<br>nuclear<br>ribonucleoprotein<br>Prp3<br>PRPE3<br>ortholog   | U4/UE SMALL<br>NUCLEAS<br>BIBONUCLEOPROTEIN<br>PEP3<br>(PTHR14212;SEQ)  |                          | Homo<br>sapiens |







WillsEye Hospital



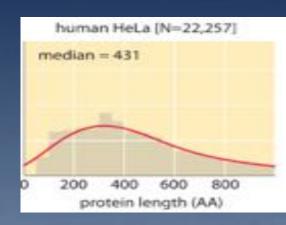
# X-linked-8 so +6 from GO=14

- RPGR
- RS
- CHM
- RP2
- OPN1LW
- OFD1
- PRPS1
- DMD





#### Large genes >1200kb, >400 aa


- OPA1-700aa
- EFEMP1-493aa
- KIF11-1093aa
- COL11A1-1806aa
- TOPORS-1045aa
- SNRNP200-2136aa
- COL2A1-1487aa
- ATXN7-945aa
- RIMS1-1692aa
- JAG1-1218aa

RS1 CHM PRPF31 OPA1 RP2 EFEMP1 PRPF8 KIF11 LRP5\* \*SNRNP200 PRPF3 FZD4 COL11A1 TOPORS COL2A1 OPN1LW\* ATXN7\* RIMS1\* JAG1 TEAD1 PITPNM3 OTX2 CCT2 GDF6 CTNNA1 VCAN MFN2 NR2F1 HK1 PRPF4 AHR OFD1 PRPS1

> ZNF423 RB1 DMD C3

FBLN5

RPGR







# gnomAD MS>2.99 so o/e<1 so selected against or protected from mutation- 14

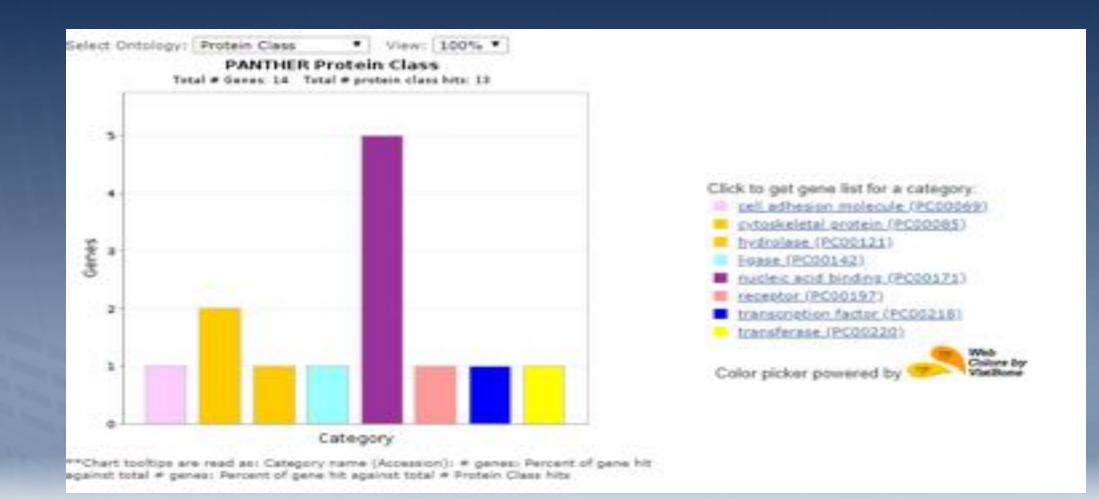
| PRPF31   |  |
|----------|--|
| PRPF8    |  |
| KIF11    |  |
| SNRNP200 |  |
| PRPF3    |  |
| KLHL7    |  |
| PNPLA6   |  |
| COL2A1*  |  |
| JAG1*    |  |
| CTNNA1   |  |
|          |  |
| NR2F1    |  |
| HK1      |  |
| PRPF6    |  |
| PRPS1    |  |





| Analysis Type: PANTHER Overre                        | presentation Test (Releas | od 20190711)                            |                          |  |  |
|------------------------------------------------------|---------------------------|-----------------------------------------|--------------------------|--|--|
| Annotation Version and Release                       | Date: GO Ontology datat   | ase Released 2019-12-09                 |                          |  |  |
| Analyzed List: Client Text Box Input (Homo sepiens)  |                           |                                         |                          |  |  |
| Reference List: Homo sapiens (all genes in database) |                           |                                         |                          |  |  |
| Annotation Data Set: GO biologi                      | cal process complete      | • @                                     |                          |  |  |
| Test Type: * Fisher's Exact                          | Binomial                  |                                         |                          |  |  |
| Correction:   Calculate False D                      | iscovery Rate 🔍 Use th    | e Bonferrani correction for multiple to | esting ⑦ 0 No correction |  |  |
| caulta ®                                             |                           |                                         |                          |  |  |
|                                                      | Reference list            | Client Text Box Input                   |                          |  |  |
| Iniquely Mapped IDS:                                 | 20996 out of 20996        | 14 out of 14                            |                          |  |  |
| Inmapped IDs:                                        | Q                         | 0                                       |                          |  |  |
| Aultiple mapping information:                        | 0                         | 0                                       |                          |  |  |






# Spliceosome pathway

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Homo sapiens (REF) |   | Client   | Text Box Incul (V.     | He  | carchy, NEW | (2)      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---|----------|------------------------|-----|-------------|----------|
| 30 biological process complete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #                  | # | expected | <b>Fold Enrichment</b> | +1. | tow P value | EDR      |
| inficectional tri-snRNP complex assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                 | 4 | .01      | > 100                  | +   | 2.23E-10    | 3.56E-06 |
| Vspliceosomal snRNP assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38                 | 4 | 03       | > 100                  | +   | 1.36E-08    | 1 08E-04 |
| mRNA solicing, via soliceosome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                | 5 | 20       | 25.00                  | *   | 1 12E-06    | 3.57E-03 |
| Immediate and the second se         | 479                | 5 | 32       | 15.65                  | +   | 1.07E-05    | 1 71E-02 |
| "RNA splicing via transesterification reactions with bulged adenosine as nucleophile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 300                | 5 | 20       | 25.00                  | +   | 1 12E-06    | 2 98E-03 |
| MRNA splicing, via transesterification reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 303                | 5 | 20       | 24.75                  | +   | 1.18E-06    | 2.68E-03 |
| *BNA solicing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 400                | 5 | 27       | 18.75                  | +   | 4.50E-06    | 8.96E-03 |
| *ribonucleoprotein complex assembly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 188                | 5 | 13       | 39.89                  |     | 1.16E-07    | 6.17E-04 |
| <ul> <li>Chonucleoprotein complex subunit organization</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195                | 5 | 13       | 38.45                  | +   | 1.39E-07    | 5.53E-04 |
| <ul> <li>Interview of the second second</li></ul> | 423                | 5 | .29      | 17.52                  | +   | 6.24E-06    | 1.10E-02 |

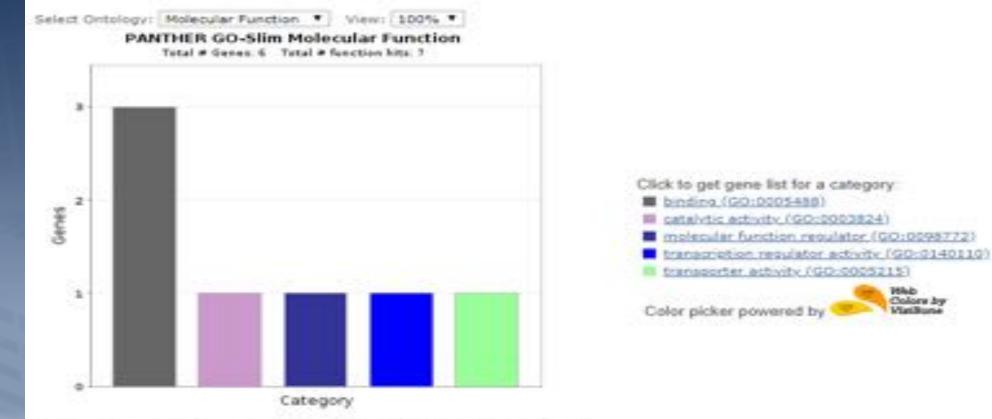











# gnomAD MS Z<-2.99 so o/e >1 so more mutations than chance alone-6

| KCNV2      |  |
|------------|--|
|            |  |
| RP1L1*ms*s |  |
|            |  |
| ALMS1*     |  |
|            |  |
| ADAMTS18   |  |
| WFS1*MS    |  |
| VVF31 IVIS |  |
| SAMD11     |  |





### No enrichment pathway



\*\*Chart tookips are read as: Category name (Accession): # genes: Percent of gene hit against total # genes: Percent of gene hit against total # Function hits





### Questions

- What makes these genes statistically very different than other IRD genes?
- GO states that spliceosome pathway is over-represented in the loss of function group and in the underrepresented MS group-these are selected against
- Norrin signal(I)inggenes are also over-represented in the loss of function group-these are selected against
- There are IRD genes that are selectively over or underrepresented-some are basic pathway genes and these are underrepresented-why the other genes are over or under-represented needs to be further evaluated- not purely related to size and X chromosome
- Differences with ocular tumor genes, anterior segment morphogenesis, cataract and glaucoma genes are being evaluated



