Development of a novel retinal tamponade to replace gas and oil

Tomasz P Stryjewski MD
Tallman Eye Associates
Boston, Massachusetts

Retina Society 2020
Financial Disclosure

Co-founder and equity co-owner with Tony Stefater MD PhD in a start-up company (Pykus Therapeutics, Inc., Cambridge, MA) which is developing the presented technology for clinical use
Summary

- Gas/oil tamponade is a considerable burden for patients
- Many promising alternatives have not advanced to the clinic
- We have spent the last 5 years developing an *in situ* forming, biodegradable polymer to provide two weeks of continuous retinal tamponade
- No positioning required, no induced refractive shift, no removal surgery
- Human pilot studies to begin Q3 2020
Current tamponade methods are a burden
Many promising alternatives have not advanced to the clinic

- Heavy silicone oils
- Magnetic oils
- Combination gas-oils
- Retinal sealants
- Intraocular capsules

- Hydrogels
Our Approach

• Find really smart polymer chemists
• Design a tamponade that meets design criteria
• Test it in animals for safety and efficacy
• Manufacture in compliance with Regulatory and Quality standards of the FDA

• Perform clinical trial
Our Approach
PYK-1105 (functionalized PVA-PEG hydrogel)
Physical Characteristics of PYK-1105

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to injection (duration of minimal viscosity after mixing at 25°C)</td>
<td>10 min</td>
</tr>
<tr>
<td>Time to gel formation after injection (duration until viscous gel formation at 37 °C)</td>
<td>4 min</td>
</tr>
<tr>
<td>Time until degradation</td>
<td>11-14 days</td>
</tr>
<tr>
<td>Refractive index</td>
<td>1.3385</td>
</tr>
<tr>
<td>Transparency</td>
<td>>90% across visual spectrum</td>
</tr>
</tbody>
</table>
ISO 10993 Biocompatibility Data

- Evaluated in mice and rabbits using standard ISO protocols for evaluating biocompatibility of medical devices

<table>
<thead>
<tr>
<th>Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytotoxicity</td>
<td>Non-cytotoxic</td>
</tr>
<tr>
<td>Intravitreal injection</td>
<td>Non-irritant</td>
</tr>
<tr>
<td>Acute systemic toxicity</td>
<td>Non-toxic</td>
</tr>
<tr>
<td>Material-mediated pyrogenicity</td>
<td>Non-pyrogenic</td>
</tr>
<tr>
<td>Endotoxin</td>
<td>< 0.2 EU/device</td>
</tr>
<tr>
<td>Implantation</td>
<td>No macroscopic reaction; minimal to no microscopic reaction</td>
</tr>
<tr>
<td>Genotoxicity</td>
<td>Non-mutagenic</td>
</tr>
</tbody>
</table>
Preclinical studies

• PYK-1105 formulation is well tolerated in a rabbit & mini-pig vitrectomy model
 – 25g vitrectomy/fluid-air exchange/PYK-1105 implantation

• Pre-GLP study in rabbit (4) & mini-pig (5)
 – One pig removed from study on POD3 due to post-op VH

• Manuscript accepted for publication in *JVRD*
Preclinical studies

Representative animals from post-operative week 4
Preclinical studies

Clinical exam scores over first month
(Modified Draize/ McDonald-Shadduck scoring systems)
Preclinical studies

Representative animals from Post-operative week 4

IOP remains normal post-operatively
Normal histopath; normal ffERG

Rabbit H&E, post-operative week 4

Mini-pig H&E, post-operative week 4

<table>
<thead>
<tr>
<th>Rabbit, pow4</th>
<th>Mini-Pig, pow4</th>
</tr>
</thead>
<tbody>
<tr>
<td>scotopic maximum combined response</td>
<td>scotopic maximum combined response</td>
</tr>
<tr>
<td>photopic flash</td>
<td>photopic flash</td>
</tr>
<tr>
<td>30 Hz flicker</td>
<td>30 Hz flicker</td>
</tr>
</tbody>
</table>

Graphs show data comparisons between Control and Hydrogel conditions.
Pilot human study

• 10 patient, first-in-human study to begin Q3 2020

• Multicenter, single cohort, open label study

• Enrollment restricted to patients with RRD who have limited visual potential

• Primary outcome is safety and tolerability

• Patients will be followed for 6 months post-operatively

• Interim study results expected Q1 2021
Leadership

James A. Stefater, MD, PhD
President & Cofounder
Vitreoretinal surgeon; Eye Health Services

Tomasz P. Stryjewski, MD
Chief Scientific Officer & Cofounder
Vitreoretinal surgeon; Tallman Eye Co-Founder, Helio Vision Inc.

Sameer Sabir
Executive Chairman
Founder & CEO, Brixton
Founder & CEO, Seven Oaks
Founder & CEO, MoMelon

Team

Larry Roth
Product Development
20+ years experience in medical device development

Gordon Roberts
Quality
20+ years in medical device quality and regulatory

Maureen O’Connell
Regulatory
20+ years in ophthalmic device regulatory

Olivier Kagan
Project Management
Previously Director of Quality Systems at NSF

Lori Gilmartin, RN
Clinical Operations
20+ years in clinical study management

Advisors

Carl Awh, MD
Tennessee Retina

Dean Elliott, MD
Mass Eye and Ear

Leo Kim, MD, PhD
Mass Eye and Ear

Darius Moshfeghi, MD
Stanford
Contact

Tony Stefater, MD, PhD
tony@pykustherapeutics.com

Tommy Stryjewski, MD
tommy@pykustherapeutics.com

Pykus Therapeutics Inc.
One Mifflin Place, Suite 320
Cambridge MA 02138