VEGF blockage prevents retinal tissue regrowth in retinal vascular disease

Michael Trese MD

Co-Authors

- Kimberly Drenser MD PhD
- Antonio Capone jr MD
- Kenneth Mitton PhD
- Wendy Dailey MS

Financial Disclosure

- Antonio Capone Jr MD
- Kimberly Drenser MD PhD
- Wendy Dailey MS
- Michael Trese MD

All have equity interest in Retinal Solutions LLC

Summary

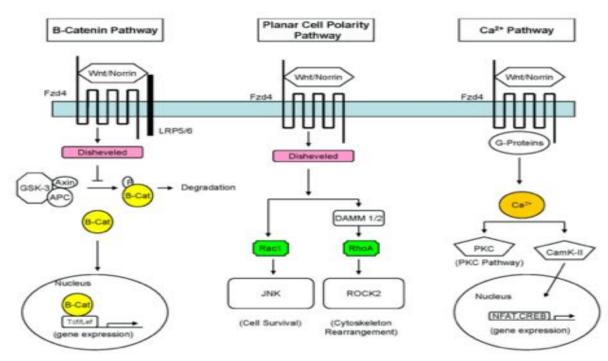
VEGF blockage prevents retinal tissue regrowth Noregen (a modified Norrin protein) driven Wnt signaling promotes retinal tissue regrowth

Clinical Finding

 It has become clear in many human retinal vascular studies treating with anti-VEGF that areas of capillary loss measured at the beginning of the study are the same at the end of the study when anti-VEGF is no longer needed

Why does that occur ?

 We think that the hypoxic retina which originally drove the VEGF activation is at the end of the study anoxic due to continuing neuronal death reducing VEGF drive


Noregen : a modified Norrin Protein

- Norries Disease has taught us much about normal retinal development Norrin driven Wnt signaling stimulates a myriad of proteins which supports retinal development during the first several months of life
- Norries Disease is caused by the absence of the ability to make the Norrin protein which results in

100% bilateral blindness40% hearing loss40% CNS alterations

What are Wnt Pathways

- Signal transduction pathways made of proteins
- Expressed in epithelial and endothelial cells
- 19 Wnts Norrin is a Wnt mimic

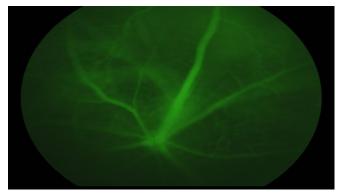
Why the difference ?

- Other Wnt activators can result in hearing and CNS function
- No substitute for Norrin driven Wnt signaling for retinal development

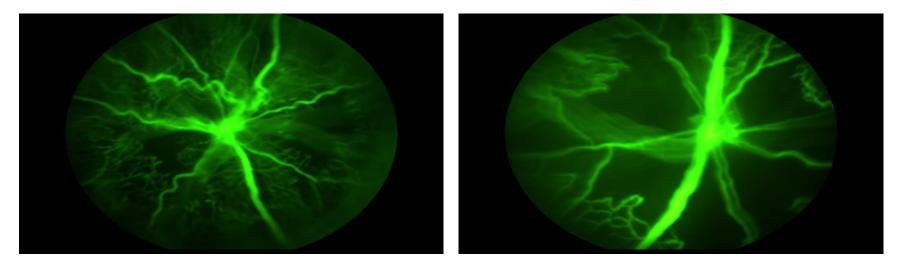
Norrin protein activity in animal models of retinal vascular disease

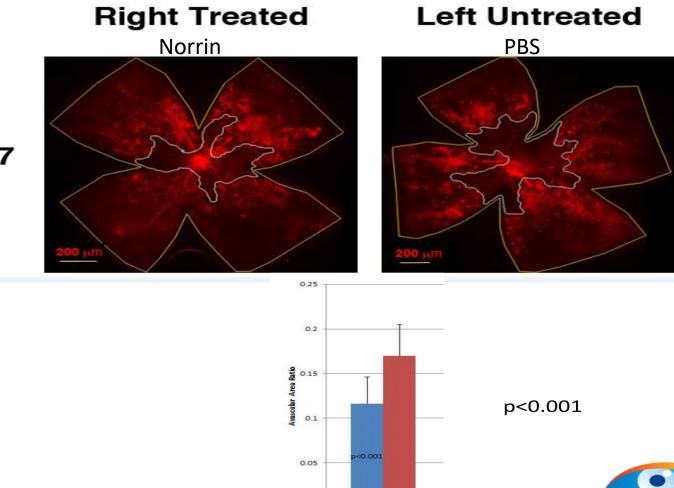
- Directly repairs vascular Tight Junction proteins in human retinal endothelial cell tissue culture and animal models
- Block PLVAP pinocytotic vascular leakage
- Blocks neovascularization
- Promotes growth of non-fenestrated retinal capillaries and retinal neurons by altering the microenvironment to activate insitu retinal progenitor cells
- This is the environment which grew healthy retina originally

In Vivo POC: Protects from VEGF insult


At peak VEGF activity in an oxygen-induced retinopathy murine model, Norrin protein treated eye does not show the leakage and disorganized vascularization of VEGF insult (Both slides P17)

Peak VEGF effect


- Leakage (fuzzy vessels) from compromised cellular junctions and through-cell transfer (pinocytosis)
- Disorganized pathologic new growth

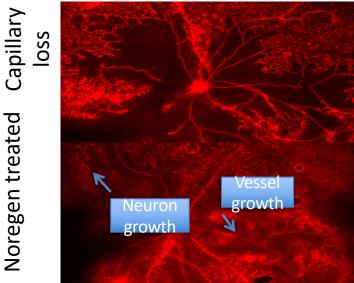

Norrin protein treated

- No evidence of leakage
- Organized vessel growth

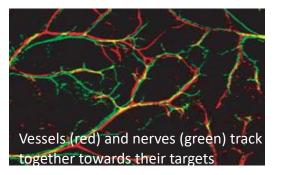
Aflibercept injection VEGF blockage does not allow normal capillary growth or regrowth as demonstrated in human DR studies Peak VEGF effect Aflibercept injection

P17

Anti-VEGF blocks PATHOLOGIC and APROPRIATE ANGIOGENASIS


Modulated VEGF is needed for healthy retinal development

In Vivo POC: Neurovascular Unit


Norrin protein stimulates vascular and neuronal growth in appropriate

areas

(oxygen-induced retinopathy model)

Healthy capillary growth requires neural pathways to guide capillary development

Progenitor cells have been identified in the Retina

- Mueller cells and amacrine cells
- Ohlmann in murine retina has shown that these progenitor cells respond to stimulation by Norrin to form healthy retinal tissue including the deep capillary plexus

Conclusion

• Plan to be in clinical trials in 2021 for this insitu Retinal Regenerative Therapeutic